leseprobe - Page Pro Media GmbH

pate in authoring of the German Model High-Rise Guidelines ...... chen nicht kontrollierbaren Druckzonen – Familie C, Typ A. Berlin, Germany : Beuth Verlag ...
4MB Größe 13 Downloads 641 Ansichten
E B O EPR

LES

SAFE FIRE FIGHTING WATER SUPPLY TO HYDRANTS IN HIGH-RISES AND LARGE PROPERTIES

Götsch . Wozniak . Kluth . Fichtner . Pelzl . Municipal Authority of Frankfurt a. M.

LE

E B O R SEP

E B O R SEP

LE Fire Protection Research

SAFE FIRE FIGHTING WATER SUPPLY TO HYDRANTS IN HIGH-RISES AND LARGE PROPERTIES

E. Götsch, G. Wozniak, K. Kluth, L. Fichtner, T. Pelzl and the Municipal Authority of Frankfurt a. M.

E B O R SEP

LE

SUBSIDIZED AND FINANCED BY:

Sächsische Aufbaubank (SAB), Federal Republic of Germany

GEP IndustrieSysteme GmbH

DEVELOPMENT PERIOD From December 2011 to July 2013

PAGE

4

E B O R SEP

LE

IMPRINT Publisher: Date: ISBN:

Page Pro Media GmbH, Chemnitz, Germany April 2014 978-3-00-043948-3

Copyright © 2014 for English edition Page Pro Media GmbH, Chemnitz 09111 Chemnitz, Germany – Markt 20/21 – Telephone +49 (0) 371-3349111 German edition: French edition: Spanish edition:

ISBN 978-3-000-43518-8 ISBN 978-3-00-043949-0 ISBN 978-3-00-043950-6

Copyediting: Cover design: Make-up, composition: Digital publishing: Printing: Title image:

Dr. Holger de Vries, Sandra Groos, Irina Sehling Carsten Ruck Page Pro Media GmbH, Chemnitz, Germany Page Pro Media GmbH, Chemnitz, Germany Förster & Borries GmbH & Co. KG, Zwickau, Germany Deutsche Bank, Frankfurt am Main, Germany

German-English translation: German-French translation: English-Spanish translation:

A.C.T. Fachübersetzungen GmbH, Germany A.C.T. Fachübersetzungen GmbH, Germany CDNT, S.L., Spain

This work is protected by copyright. The associated rights, in particular with respect to translation, reprinting, presentation, extraction of images and tables, radio broadcasting, microfilming or reproduction by other means as well as storage in data processing systems, are reserved whether in whole or in part. A reproduction of this work or parts thereof, even in individual instances, is permitted only within the limits of the statutory provisions of the Copyright Act of the Federal Republic of Germany, as currently amended. Such reproduction generally requires compensation by payment. Violations are subject to the penalties defined in the German Copyright Act. Protected trademarks are not specially identified. It shall not be concluded on this basis that such protected trademarks are intended for open use in accordance with the provisions of trademark law.

All information without liability and subject to change.

5

PAGE

E B O R SEP

LE

ABSTRACT PAGE

6

ABSTRACT

E B O R SEP

LE

Technical hydrant water supply requirements that significantly improve the functional reliability of the systems and the safety of the operators are described in this guide for the benefit of practical users, such as engineers, inspectors, assessors, approval authorities and fire department officers.

Requirements for hydrant systems for fire-fighting within a building are presented with a view toward the differences existing internationally between NFPA, FM Global, European and DIN standards and in some cases statutory regulations. Typical methods for pressure reduction in fire-fighting water systems are covered. The insights into the technical application of fire-fighting water supply systems are derived from interdisciplinary research results with the participation of universities, public authorities, leading fire departments, fire department training institutes, trade associations and industry and presented here in an accessible form. In addition to the selected fire-fighting water supply system, modern fire-fighting tactics for interior spaces have a direct impact on the recorded limit values. Principles of fluid mechanics are employed here for the first time in connection with fire-fighting water pumps permanently installed in buildings to determine the real forces on the nozzle based on the flow rate, pressure, spray pattern and employed pressure reduction methods. The impact of water expansion due to fire influences on unprotected wet fire-fighting water lines is determined and evaluated by a material testing institute. From the perspective of human factors science and ergonomics, the forces acting on the nozzle are evaluated by means of electromyographic measurements on groups consisting of trained personnel and fire department fire fighters as well as on the basis of their subjective impressions. An analysis based on principles of occupational medicine and occupational physiology supports the definition of limit values for the residual pressure at hose stations under various flow rates that must be complied with in the building engineering. These limit values are also evaluated based on the subjective evaluations supplied by the test groups. Building engineering requirements for general methods of fire-fighting water supply and pressure regulation are described in consideration of the above limit values and the concurrency of fire incidents. General perspectives on the supply of fire-fighting water supply via serial connection of pumps, baffle plates, pressure reducing valves, pressure control valves, bypass lines and, for the first time, speed regulation via frequency inverter, are described and evaluated alongside safety-related requirements. In conclusion, the requirements that must be met by the building operator and its agents for the safety of the fire department personnel and for protection of the building are presented on the basis of European and national occupational safety and labor laws.

7

PAGE

CONTENTS

E B O R SEP

LE

CONTENTS PAGE

8

E B O R SEP

Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Research participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Interdisciplinary research departments and their fields of activity . . . . . . . . . . . . . . . 16 Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Introduction, research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

LE

1.

General principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.1. 1.1.1.

Worldwide statutory requirements concerning pressure and flow rate, etc. . . . . . . . . . . 31 Technical standards for concurrency, pressure and flow rate: NFPA, FM Global . . . . . 31

1.2. 1.2.1.

German statutory requirements concerning pressure and flow rate, etc. . . . . . . . . . . . . . 35 DIN standard, normative requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3.

Types of hose stations for various user groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4. Types of nozzles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.4.1. Nozzle for self-help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.4.2. Nozzles for fire department fire fighters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.4.2.1. Classic multifunction nozzle with coupling / CM nozzle . . . . . . . . . . . . . . . . . . . . . . . . 41 1.4.2.2. Fog nozzles with C coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.5.

Basis for decision-making regarding minimum pressure, minimum flow rate, maximum pressure, concurrency of fire incidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.5.1. Minimum pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.5.2. Maximum residual pressure for stationary fire-fighting water supply . . . . . . . . . . . . . . 47 1.5.3. Minimum flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.5.4. Concurrency of fire incidents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.5.4.1. Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 1.5.4.2. Probability assessment of the possibility of simultaneous fire fighting at different fire sources within a building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1.5.4.3. Consideration of rubble and debris. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.5.4.4. Consequences of concurrency on the protection of the nozzle operator . . . . . . . . 52 1.5.4.5. Summary of the concurrency of fire incidents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.6.

Building fire-fighting tactics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.7. 1.7.1. 1.7.2.

Conditions experienced by the hydrant user groups during fire fighting in buildings . 56 Conditions for fire department fire fighters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Conditions during extinguishing of an early-stage fire by trained personnel . . . . . . . 58

1.8.

Overview of the most frequently used technical options for complying with the maximum permissible pressures at the nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 1.8.1. Pressure zone creation via single-line supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 1.8.2. Pressure zone creation via serial connection of pressure booster stations. . . . . . . . . . 60 1.8.3. Pressure zone creation via serial connection of pressure booster stations with intermediate tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 1.8.4. Pressure zone creation via valves for pressure reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 63 1.8.4.1. International . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9

PAGE

CONTENTS

1.8.4.2. 1.8.4.3. 1.8.4.4. 1.8.4.5. 1.8.5. 1.8.5.1. 1.8.5.2. 1.8.5.3. 1.8.5.4. 1.8.6. 1.8.7. 1.8.8. 2.

E B O R SEP

LE

Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Functioning principles of pressure control and pressure reducing valves. . . . . . . . 68 Additionally investigated pressure reducing and pressure control valves. . . . . . . . 69 Individual pressure reduction via baffle plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 International . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Detailed analysis: Baffle plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Special aspects of the defined flow rate, pressure ratio with baffle plates . . . . . . . 76 Pressure zones via elevated tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Pump bypass line with pressure reducing valve in the side flow . . . . . . . . . . . . . . . . . . . 79 Speed regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Hydraulic measurements and calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.1.

Measurement of pressure characteristic curves and flow rates for typical valves, regulating elements and flow inhibitors for pressure reduction in hydrant fire-fighting water lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.1.1. General description / test setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 2.1.2. Reference measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.1.3. Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.1.4. Summary of the measured pressure and flow rate values for valves, regulating elements and flow inhibitors for pressure reduction in hydrant fire-fighting water systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.1.4.1. Behavior during spray pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 2.1.4.2. Sustained withdrawal of fire-fighting water with upstream baffle plates . . . . . . . . 90 2.1.4.3. Sustained withdrawal of fire-fighting water without upstream connection of baffle plates or pressure control valves . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.2. Measurement hose filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.2.2. Measurement results for filling time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 2.2.2.1. Measurement results for C hose for use by fire departments. . . . . . . . . . . . . . . . . . . . 96 2.2.2.2. Measurement results for D hose for use by fire departments. . . . . . . . . . . . . . . . . . . . 97 2.2.2.3. Measurement results for 25-mm hose for use by trained personnel . . . . . . . . . . . . . 97 2.2.3. Summary of the measurement results for filling times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.3. Measurement of static forces on the nozzle during fire fighting. . . . . . . . . . . . . . . . . . . . . . 99 2.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.3.2. Nozzles, measurement parameters and test bench setup . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.3.2.1. Nozzles and measurement parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 2.3.2.2. Test bench setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 2.3.3. Measurement results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2.3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2.4.

PAGE

10

Estimation of the dynamic forces during opening and closing of nozzles connected to various water sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.4.1. 2.4.2. 2.4.3. 2.4.4. 2.4.5. 2.4.6. 3.

E B O R SEP

LE

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Measurement and operating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Calculation of the dynamically acting forces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Overview of the calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Summary and conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Experimental investigation of the consequences of expanding water due to the influence of flames on wet fire-fighting water lines. . . . . . . . . . . . . . . . . . . . . . .119 3.1. 3.1.1.

Results of the study at the Research Center for Fire Protection from 2007 . . . . . . . . . . . 119 Normative implementation of the research results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.2.

Definition of tasks within the scope of experimentally investigating the risk of expanding water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3.3.

Endangerment of fire fighters due to the formation of a water-steam mixture – hot steam – in wet fire-fighting water lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.4.

Summary of the experimental research results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.

Subjective evaluation of the residual pressures on the nozzle via practical testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 4.1.

Content of the subjective evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.

Task of subjective evaluation without the use of valves or flow inhibitors . . . . . . . . . . . 127

4.3.

Task of subjective evaluation with the use of baffle plates . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.4.

Goal of the subjective evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5.

Information on the test subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.6.

Result of the first subjective evaluation without the use of pressure reduction components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Forces at the nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Spray pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Overview of the subjective evaluation without the use of pressure reduction components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.6.1. 4.6.2. 4.6.3. 4.7. 4.7.1. 4.7.2. 4.7.3. 4.7.4. 5.

Result of the first subjective evaluation with the use of pressure reduction components (baffle plates). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 General forces at the nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 First subjective evaluation of the use of baffle plates for 100 l/min . . . . . . . . . . . . . . . 131 First subjectiveevaluation of the use of baffle plates for 200 l/min . . . . . . . . . . . . . . . . 132 Summary of the first subjective evaluation of residual pressures on the nozzle via practical testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Human factors evaluation of the holding forces at the nozzle . . . . . . . . . . . . . . . . . . .137 5.1. 5.1.1.

Introduction and task definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Investigation scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2.

Electromyographic strain measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

11

PAGE

CONTENTS

E B O R SEP

LE

5.3. Description of the testing methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.1. Test purpose and setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.2. Test subjects - experienced fire fighters and trained personnel . . . . . . . . . . . . . . . . . . . 143 5.3.2.1. Fire fighters test group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.3.2.2. Trained personnel test group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 5.3.3. Subjective survey methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.3.1. Subjective survey of fire department fire fighters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.3.2. Subjective survey of the trained personnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.4. Test performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.3.4.1. Tests with the fire department fire fighters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 5.3.4.2. Tests with trained personnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.4.

Experimental investigations on the strain effects of fire fighting . . . . . . . . . . . . . . . . . . . . 153

5.5. Summary of the human factors research results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5.1. Methods of pressure regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5.1.1. Baffle plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5.1.2. Pressure reducing valves, pressure control valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 5.5.1.3. Reference measurement with fog nozzle via the pump of the fire engine . . . . . . 156 5.5.1.4. Reference measurement with CM nozzle via the pump of the fire engine . . . . . . 156 5.5.1.5. Reference measurement with Euro nozzle for trained personnel via the pump of the fire engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.5.2. Specification of hydraulic limits values for building engineering . . . . . . . . . . . . . . . . . 157 5.5.2.1. Maximum residual pressure at hose stations in connection with fog nozzles . . . 157 5.5.2.2. Minimum residual pressure at hose stations in connection with fog nozzles . . . 157 5.5.2.3. Minimum flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 5.5.2.3.1. Minimum flow rate within a building for hose station systems . . . . . . . . . . . . . . 158 5.5.2.3.2. Minimum flow rate at the individual hose station. . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.

Evaluation according to occupational safety laws of technical measures for fire-fighting water supply and pressure reduction . . . . . . . . . . . . . . . . . . . . . . . . . .163 6.1.

Hazard assessment and preparation of the fire department . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2.

General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3.

Hazard assessment of the employed hydrant fire-fighting water supply technology by the owner / operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4. 6.4.1.

Evaluation of the measurement results according to occupational safety laws . . . . . . 166 Evaluation of the static and dynamic forces at the nozzle compared with the reference measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Evaluation of the forces in the line system due to expanding water . . . . . . . . . . . . . . 167 Evaluation of the human factors results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Summary of the evaluation according to occupational safety laws of technical measures for fire-fighting water supply and pressure reduction . . . . . . . . 167

6.4.2. 6.4.3. 6.4.4. 7.

Analysis and evaluation of technical measures for pressure reduction . . . . . . . . . . .173 7.1.

PAGE

12

Summary of the risk analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

E B O R SEP

LE

7.2. Summary of the requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.2.1. General requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 7.2.2. Additional system-specific requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.2.2.1. Serial connection of pressure booster stations with intermediate tank . . . . . . . . . 178 7.2.2.2. Pressure reduction via pressure reduction valves in the main flow of the line system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.2.2.3. Pump bypass line with pressure reduction valve in the side flow. . . . . . . . . . . . . . . 178 7.2.2.4. Speed regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8.

Concluding remarks and final summary of the interdisciplinary research report. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183 Abbreviations and symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 Reference measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208 Scientific appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365 List of measurement equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366

13

PAGE

RESEARCH PARTICIPANTS/ SCIENTIFIC PERSONNEL

E B O R SEP

LE

Enrico Götsch Publicly appointed and sworn expert in sanitation engineering, specialized in industrial and fire-fighting water systemsA [email protected] www.gutachten-H2O.de Enrico Götsch

Chemnitz University of Technology, Germany Professorship of Fluid Mechanics Prof. Dr.-Ing. habil. Günter Wozniak [email protected] www.tu-chemnitz.de Scientific personnel

Prof. Dr.-Ing. habil. Dipl.-Ing. Carsten Heinich Günter Wozniak

Dr.-Ing. Klaus-Peter Schade Dipl.-Phys. Gernot Trommer

University of Siegen, Germany Professorship of Human Factors Science / Ergonomics Prof. Dr.-Ing. Karsten Kluth [email protected] www.uni-siegen.de Scientific personnel

Prof. Dr.-Ing. Dipl.-Wirt.-Ing. Sandra Groos Karsten Kluth

Dr.-Ing. Mario Penzkofer

PAGE

14

E B O R SEP

LE

State Fire-Fighting School of Saxony, Germany Director of the State Fire-Fighting School Lutz Fichtner [email protected] www.lfs.sachsen.de Technical instructor Lutz Fichtner Volker Fabian

German Social Accident Insurance (DGUV) Department of Safety and Health Head of the workgroup “Fire Departments – Assistance, Fire Protection, Disposal” Dipl.-Biologe Tim Pelzl [email protected] Dipl.-Biologe www.dguv.de Tim Pelzl

Municipal Authority of Frankfurt am Main1, Germany Fire Safety Directorate of the Municipal Fire Department [email protected] www.frankfurt.de

GEP IndustrieSysteme GmbH, Germany Department of Building Fire-Fighting Water Supply [email protected] www.GEP-H2O.de Wilo SE, Germany www.wilo.com

We would also like to thank2 Mike Chen, Monica Day, Vincent Dunn, the Siegen and Zwönitz fire departments, Larry King, Phillip Kloos, Dave Larson, the Material Testing Institute of the University of Stuttgart, Ryan, Torsten Saage, Joseph J. Schiralli, Clemens Schlomka, Christian Simon, Ludger Tegeler and Medardo Tudela Goñi for their assistance and support. 1

The work of the authors from the municipal authority of Frankfurt was overseen by representatives of the municipal fire department under the direction of chief fire officers.

2

In alphabetical order

15

PAGE

INTERDISCIPLINARY RESEARCH DEPARTMENTS AND THEIR FIELDS OF ACTIVITY

GEP IndustrieSysteme GmbH -

E B O R SEP

LE

Project management International research into general principles Process analysis Supply of test benches and technical equipment Supply of fire safety certification results of the testing agencies TÜV and DEKRA for speed-regulated fire-fighting water systems Supply of research results on water expansion in wet fire-fighting water lines Supply of research results on fire-fighting water supply and pressure reduction Editorial supervision, editing Graphic design

Chemnitz University of Technology - Professorship of Fluid Mechanics - Measurement of holding forces on the nozzle - Measurement of static and dynamic pressures on the nozzle with the typical technical measures for fire-fighting water supply and pressure reduction - Taking of a reference measurement - Physical evaluation of the measurement results

University of Siegen - Professorship of Human Factors Science / Ergonomics - Human factors evaluation of the hydraulic measurement results - Human factors recording of holding forces on the nozzle - Human factors limit value determination for the holding forces on the nozzle during indoor use - Human factors evaluation of technical measures for fire-fighting water supply and pressure reduction

PAGE

16

State Fire-Fighting School of Saxony

E B O R SEP

LE

- Recording of the subjective evaluation of residual pressures on the nozzle via practical testing - Fire safety evaluation of technical measures for fire-fighting water supply and pressure reduction - Safety-related evaluation and recommendation of technical measures for fire-fighting water supply and pressure reduction for building operators and their agents, such as architects and testing experts - Supply of testing facilities and equipment for field tests for subjective evaluation

German Social Accident Insurance (DGUV) - Evaluation of the scientific discoveries in terms of occupational safety law and technical operating safety - Derivation of requirements that must be met by the building operator and its agents for the safety of fire fighters and for protection of the building on the basis of European and national occupational safety and labor laws.

Municipal Authority of Frankfurt a. M. Fire Safety Directorate of the Municipal Fire Department - Fire safety evaluation of technical measures for fire-fighting water supply and pressure reduction - Safety-related evaluation and recommendation of technical measures for fire-fighting water supply and pressure reduction for building operators and their agents, such as architects and testing experts

17

PAGE

INTRODUCTION / METHODOLOGY

E B O R SEP

LE

The following specific research questions are addressed: – Which regulations applicable at the national level and commonly at the international level specify hydraulic requirements on wet hydrant fire-fighting water systems within special buildings such as high-rises and what are these hydraulic requirements? Investigation: Section 1 Result: Section 1 Summary: Section 8 – Which fire-fighting water supply systems including their pressure regulation methods are named in and evaluated by the aforementioned regulations? Investigation: Section 1 Result: Section 1.8 and Appendix A1 Summary: Section 8 – Which fire-fighting tactics should be employed by the nozzle operator while fighting building fires according to the most recent scientific studies? Investigation: Section 1 Result: Section 1.6 Summary: Section 8 – What environments are trained personnel and fire department fire fighters exposed to while fighting fires in a building? Investigation: Section 1 Result: Section 1.7 Summary: Section 8

– What forces arise directly at the nozzle depending on the pressure regulation method employed? Investigation: Section 2 Result: During individual spray pulses: Section 2.4 and Appendix A2; Figure 82; During sustained water discharge: Section 2.3.4 and Appendix A3 Summary: Section 8 – What actual pressures and flow rates are practically reached at the nozzle during the use of static flow inhibitors or baffle plates and what consequences arise? Investigation: Section 2 Result: Section 2.1.4; Figure 83; Figure 84 Summary: Section 8 – What forces at the nozzle are typical for water supply from a fire department fire engine versus a permanently installed fire-fighting water supply with pressure regulation? Investigation: Section 2 Result: Section 2.4 and Figure 82 Summary: Section 8

PAGE

22

E B O R SEP

LE

– What maximum reaction time must be satisfied by a pressure regulation method in order to comply with the hydraulic limit values? Investigation: Section 2 Result: Section 2.2.3 Summary: Section 8

– Is it a valid hypothesis that water expansion resulting during a fire due to the influence of flame on an unprotected wet fire-fighting water line is securely diverted via pipe connections or valves, obviating the need for further measures? Investigation: Section 3 Result: Section 3.4 Summary: Section 8 – What hydraulic limit values are supported by human factors science in consideration of the employed pressure regulation methods to ensure the safe use of nozzles by professional fire-fighters and trained personnel? Investigation: Section 5 Result: Method-specific limits: Section 5.5.1 Building engineering limits: Section 5.5.2 Summary: Section 8 – What obligations apply to specialized engineers, experts, fire departments, public authorities or owners and operators on the basis of occupational safety laws concerning the safe functioning of the system and its impact on fire department fire fighters? Investigation: Section 6 Result: Section 6.4.4 Summary: Section 8 – How should the individual pressure regulation methods in fire-fighting water systems be evaluated within the scope of a risk analysis? Investigation: Section 7 Result: Section 7.1 and Appendix A5 Summary: Section 8 – What generally applicable safety requirements on the supply of fire-fighting water to hydrants can be derived from the research? Investigation: Scientific appendix Result: Method-specific limits: Section 5.5.1 Building engineering limits: Section 5.5.2 Technical requirements: Section 7.2 and Appendix A5 Summary: Section 8

23

PAGE

E B O R SEP

LE

1 PAGE

26

E B O R SEP

LE

Fire Protection Research SAFE FIRE-FIGHTING WATER SUPPLY TO HYDRANTS IN HIGH-RISES AND LARGE PROPERTIES

1 GENERAL PRINCIPLES

27

PAGE

E B O R SEP

LE

PAGE

28

1

GENERAL PRINCIPLES

This section is dedicated to the following research questions:

E B O R SEP

LE

– Which regulations applicable at the national level and commonly at the international level specify hydraulic requirements on wet hydrant fire-fighting water systems within special buildings such as high-rises and what are these hydraulic requirements? – Which fire-fighting water supply systems including their pressure regulation methods are named in and evaluated by the aforementioned regulations? – Which fire-fighting tactics should be employed by the nozzle operator while fighting building fires according to the most recent scientific studies? – What environments are trained personnel and fire department fire fighters exposed to while fighting fires in a building? Since the start of the 19th century, supplying fire-fighting water in tall buildings and horizontally expansive properties Figure 1 has posed a challenge. Suitable technical measures must be employed to ensure the constant availability of fire-fighting water at all water hydrants, whereby the pressure also plays a role in addition to the required quantity.

Figure 1: High-rise (l.) and large property (r.) with limited access opportunities for fire engines

29

PAGE

1

GENERAL PRINCIPLES

E B O R SEP

LE

In the buildings and properties described above, classic measures for supplying water for fighting fires inside the building are only of limited use. In standard buildings, the supply of fire-fighting water is realized by means of a water source in combination with the fire engine Figure 2, whereby this type of water supply is limited by access opportunities and the discharge head of the fire engine pump. In high-rises and, to a certain extent, in horizontally expansive properties, the classic measure described above is generally not capable of supplying fire-fighting water to the higher floors or hydraulically unfavorable withdrawal points.

Figure 2: Classic feeding of fire-fighting water into a building hydrant system: from the water source of an exterior hydrant via the pump of the fire engine (2)

Fire-fighting water systems with permanently installed pumps are generally integrated into such buildings according to statutory requirements and technical standards. It is the responsibility of the building owner or user to ensure the supply of water for fighting fires and rescuing people according to the country specific requirements. For high-rises in particular, no alternative exists for supplying water to fight fires. According to the leading4 fire departments (1), the supply of fire-fighting water to these special buildings (4) (5) “must be implemented such that there is no danger to public safety and order, in particular to life, health and the natural conditions essential to life.”

4

PAGE

30

Within Germany, the fire departments that have the most historical experience in fighting fires in high-rises and that participate in authoring of the German Model High-Rise Guidelines

LE

E B O R SEP

1

GENERAL PRINCIPLES

E B O R SEP

LE 1.2.1

DIN STANDARD, NORMATIVE REQUIREMENTS

In Germany, on the basis of the statutory requirement described above, the hydraulic requirements for hydrant systems were integrated into the standard DIN 14462 (18). The standard therefore requires a residual pressure* of 0.45 to 0.8 MPa at 200 l/m with a concurrency of 3 hose stations for the supply of fire-fighting water to hydrants for use by the fire department10 and by trained personnel. In addition, the standard establishes a static pressure of 1.2 MPa for the first time. The above minimum values and limit values must be guaranteed at the hose connection valve Figure 8 of the hose stations.

Figure 7: Pressure and flow rate requirements according to the DIN standard and the Model High-Rises Guidelines for use by fire departments and trained personnel in high-rises

Figure 8: Measurement point for flow rate and pressure determination at hose stations for combined use by fire departments and trained personnel in Germany

10 In high-rises

PAGE

36

1.3

E B O R SEP

LE

TYPES OF HOSE STATIONS FOR VARIOUS USER GROUPS

No standard hose station type exists at the international level. Nevertheless, according to the knowledge of the authors, the hose stations for dual use by fire departments and trained personnel11 have become widely accepted for highrises, with due consideration of particular country-specific aspects.

The type F hose station according to DIN 14461-1 (19), which is used in Germany, is described here by way of example. The parts used, such as the water-carrying decoiler, nozzle and hose, are subject to uniform Europe-wide testing criteria (20) (21) and must be tested by accredited testing agencies, such as FM Global, TÜV or VdS. The hose stations for dual use Figure 9 allow a fire to be fought in its early stages by trained personnel and in more advanced stages by trained fire department fire fighters. The hydrant is equipped with a 2-inch (50 mm) hose connection valve and a connected, dimensionally stable “plastic hose” with mini nozzle for use by persons without special prior training. The mini nozzle Section 1.4.1 is typically referred to as a “Euro nozzle” and is subject to the uniform European testing standard DIN EN 671 regardless of regional variations in its external shape. In event of a fire, the fire department disconnects the dimensionally stable “plastic hose” intended for trained personnel and connects the flat hose typically used by fire departments and equipped with a professional nozzle Section 1.4.2.2 to the 2-inch hose connection valve. For instance, in connection with a Kv value12 of 50 Figure 10, this ensures a high to very high availability of fire-fighting water in the building.

Figure 9: Standardized European hose station for combined use by fire departments and trained personnel with a 2-inch hose connection valve 11 Self-help safety 12 The Kv value corresponds to the water flow through a valve in m³/h at a pressure difference of 0.1 MPa.

37

PAGE

1

GENERAL PRINCIPLES

LE

E B O R SEP

The dual use of hose stations by trained personnel and trained fire department fire fighters is preferred internationally because, in addition to aesthetic design aspects, this combination enables effective and safe fire-fighting by trained personnel. Hose stations have the advantage over fire extinguishers of offering a nearly inexhaustible supply of water13 as well as simple and familiar operation.

Figure 10: Sample Kv value characteristic curve of a 2-inch certified hose connection valve PN25

Figure 11: Overview of extinguishing agent supply, hose station system and fire extinguisher

13 Operating duration 2 hours according to DIN 14462 (18)

28 38

PAGE PAGE

1.4

TYPES OF NOZZLES

1.4.1

NOZZLE FOR SELF-HELP

E B O R SEP

LE

The mini nozzle permits self-help, i.e. fighting of fires in early stages by persons without special prior training. These are often referred to as Euro nozzles. No standard design exists at the international or European level. In Europe, this component is subject to the uniform European testing standard DIN EN 671. In addition to the minimum hydraulic performance, this standard regulates the strength and operating forces, such as for a hydrant or decoiler with 25 mm internal hose diameter according to DIN EN 694 (21): - Operating pressure: 1.2 MPa - Test pressure: 1.8 MPa - Minimum pressure: 0.2 MPa - Strength: 3.0 MPa - Operation of nozzle up to 4 Nm (opening/closing) - Water distance for fog stream and solid stream With regard to the minimum flow volumes, the standard Figure 12 covers various types of mini nozzles with discharge openings from 4 to 12 mm.

Figure 12: Minimum flow volumes of Euro nozzles (20)

It is left to the individual countries to determine which mini nozzle will be used in that region. In Germany (22), a combination Figure 13 of a 30 m long, dimensionally stable hose with an internal diameter of 25 mm and a mini nozzle with a discharge opening of 6 mm is required. The operation of the valve is reduced to opening, closing and a simple fog stream setting.

39

PAGE

1

GENERAL PRINCIPLES

LE

E B O R SEP

A Euro nozzle according to DIN EN 671 Figure 13, spray pattern Figure 14 and 15 with a discharge opening of 6 mm (23) was used for the detailed investigations.

Figure 13: Euro nozzle for trained personnel according to DIN EN 671 with 6 mm discharge opening and 25 mm hose connection

Figure 14: Example spray pattern 0.8 MPa on solid stream, Euro nozzle for trained personnel according to DIN EN 671

Figure 15: Example spray pattern 0.8 MPa on fog stream, Euro nozzle for trained personnel according to DIN EN 671

PAGE

40

E B O R SEP

LE

1.4.2

NOZZLES FOR FIRE DEPARTMENT FIRE FIGHTERS

1.4.2.1

CLASSIC MULTIFUNCTION NOZZLE WITH COUPLING / CM NOZZLE

The classic option for fire-fighting by fire departments in the past was a multifunction nozzle with C coupling or an internal coupling diameter of, for example, 45 mm. In Germany, this type is referred to as a CM nozzle Figure 17 and standardized in DIN EN 15182-3 (24). Despite regional variations in their external appearance, recently manufactured versions of these fittings from around the world14 differ only marginally in their function and performance. The operation is limited to: -

Solid stream Fog stream Closing Increasing the flow volume by removing the mouth piece

Figure 16

Figure 16: CM nozzle according to DIN EN 15182-3, type: multifunction CM nozzle without mouth piece

Figure 17: CM nozzle according to DIN EN 15182-3, type: multifunction CM nozzle with mouth piece

14 According to the authors’ knowledge

41

PAGE

1

GENERAL PRINCIPLES

E B O R SEP

LE

As an anticipation of the measurement results Section 2.1.4, it can be noted that at a Primary pressure* of 1.2 MPa and use of a baffle plate calculated for 200 l/min and 0.45 MPa Figure 68, only an actual39 water flow of 120 l/min at 0.3 MPa Figure 69, Figure 123 and 124 is available to the nozzle operator. Figure 69: The actual water flow at the nozzle differs markedly from the theoretical calculation of 200 l/min and 0.45 MPa with a measurement value of only 120 l/min and 0.3 MPa, see section 2.1.4

The detailed risk analysis can be found in the scientific appendix A5. 1.8.6

PRESSURE ZONES VIA ELEVATED TANK

For the sake of completion, the method of utilizing elevated tanks is described here. This method is mentioned as a redundant supply in NFPA 14 (6) and the FM Global data sheet 3-7 (44). Due to increased requirements concerning available space and the load-bearing properties of buildings, odors from stagnant water, irritating noise during service work, the frequent presence of maintenance personnel in the building and limited supply pressure, this system is now only rarely utilized in new buildings. With this method, the water source is implemented in the form of a tank open to the atmosphere and situated at the highest necessary point of the respective pressure zone. The available static pressure is converted into dynamic pressure in relation to the height difference between the withdrawal point and the highest water level. Figure 70: Pressure zones via elevated tank

39 Depending on the hose, nozzle and various settings

PAGE

78

1.8.7

PUMP BYPASS LINE WITH PRESSURE REDUCING VALVE IN THE SIDE FLOW (48)

E B O R SEP

LE

For smaller building heights, a pump bypass line is employed. Pumps without speed regulation are used in this case (48). Compliance with the minimum and maximum pressure at the nozzle is ensured without additional valves in the main line and independent of the withdrawn flow rate. With use of a pump bypass line, a pressure control valve Figure 71 with upstream automatic shutoff is installed in the side flow of the fire-fighting water distribution line. Overpressures that arise when the discharge rate is too low are reduced by diverting a variable water flow Figure 72 into the reserve tank.

Thanks to the intentional avoidance of pressure control valves in the main flow of the fire-fighting water distribution line, the supply of fire-fighting water is guaranteed regardless of the functioning of the valve.

Figure 71: Pump bypass line, e.g. operating pressure 0.7 MPa

79

PAGE

1

GENERAL PRINCIPLES

E B O R SEP

LE

Figure 72: Characteristic curve of a pump bypass line, operating pressure up to 0.7 MPa

Detailed analysis of pump bypass lines Within the scope of the detailed investigation, the following pressure control valve (75) for use in the bypass line is examined by way of example with regard to its hydraulic behavior in event of a fire-fighting incident.

Figure 73: Pressure control valve DN 80 (74) (75)

The safety-related requirements on the system are presented in section 7.2.2.3. The detailed risk analysis can be found in the scientific appendix A5.7.

PAGE

80

1.8.8

SPEED REGULATION°

E B O R SEP

LE

In addition to the known classic design types, alternative solutions (48) exist for high-rises that intentionally avoid the use of pressure control valves in the fire-fighting water distribution line. In this case, speed regulation of the pump(s) Figure 74 in relation to the respectively open hose stations Figure 387, standard case Appendix A5.8.1.1 is used to ensure the required residual pressure* at the hose stations. This regulation guarantees the supply of fire-fighting water without depending on the functioning of such a valve. Pumps with frequency inverters are used for the speed regulation. For regulation purposes, the required residual pressure* Figure 75, e.g. 0.6 MPa, is assigned to each individual hydrant. The speed regulation then makes it possible to ensure an arbitrary residual pressure* independent of the flow rate and without the need for additional control valves or baffle plates. With this type of system, the ability to supply multiple pressure zones at the same time is limited. However, according to the assumptions of construction legislation, the practical experience of fire departments and the mathematically calculated probability Section 1.5.4, it can be expected that a fire will always be locally limited to a single location in a building. The safety-related requirements on the system are presented in section 7.2.2.4. The detailed risk analysis can be found in the scientific appendix A5.7.

Figure 74 (l.): Speed regulation, referred to as the real pressure method Figure 75 (r.): Pump characteristic curve for speed regulation, referred to as the real pressure method

° Speed regulation is also known as real pressure process

81

PAGE

E B O R SEP

LE

2 PAGE

82

E B O R SEP

LE

Fire Protection Research SAFE FIRE-FIGHTING WATER SUPPLY TO HYDRANTS IN HIGH-RISES AND LARGE PROPERTIES

2 HYDRAULIC MEASUREMENTS AND CALCULATIONS

83

PAGE

E B O R SEP

LE

PAGE

84

2

HYDRAULIC MEASUREMENTS AND CALCULATIONS

This section is dedicated to the following research questions:

E B O R SEP

LE

– What forces arise directly at the nozzle depending on the pressure regulation method employed? – What actual pressures and flow rates are practically reached at the nozzle during the use of static flow inhibitors or baffle plates and what consequences arise? – What forces at the nozzle are typical for water supply from a fire department fire engine versus a permanently installed fire-fighting water supply with pressure regulation? – What maximum reaction time until meeting of the hydraulic limit values must be satisfied by a pressure regulation method? 2.1

MEASUREMENT OF PRESSURE CHARACTERISTIC CURVES AND FLOW RATES FOR TYPICAL VALVES, REGULATING ELEMENTS AND FLOW INHIBITORS FOR PRESSURE REDUCTION IN HYDRANT FIRE-FIGHTING WATER LINES

2.1.1

GENERAL DESCRIPTION / TEST SETUP

The test setup Figure 80 is intended to record the flow rate and pressure Section 2.1.4 as well as the dynamic forces Section 2.4 at the nozzle. The term dynamic forces refers to the forces Figure 76 and 77 that arise at the nozzle upon opening and closing of the water supply, for instance in connection with the spray pulse tactic Section 1.6 used.

Figure 76: Dynamic forces – negative shock pressure Figure 77: Dynamic forces – positive shock pressure

85

PAGE

2

HYDRAULIC MEASUREMENTS AND CALCULATIONS

E B O R SEP

LE

In order to evaluate the hydraulic behavior of various methods Section 1.8 for pressure reduction in hydrant fire-fighting water systems, a nozzle of type AWG Section 1.4.2 with the following rated setting* was used for the speed regulation and bypass line.

– Fog stream 130 l/min – Fog stream 235 l/min – Fog stream 400 l/min For the evaluation of baffle plates, the nozzle Akron Brass Section 1.4.2 with the following rated setting* was additionally tested. – Fog stream 100 l/min – Fog stream 200 l/min – Fog stream 300 l/min – Fog stream 450 l/min The standard CM nozzle with a freely discharging stream Section 1.4.2 was also tested to supply a hydraulic comparison value. – Cross-section 9 mm (with mouth piece) – Cross-section 12 mm (without mouth piece) For simulation of the spray pulses described in Section 1.6, a pneumatic cylinder with a limit switch Figure 79 was used to realize the opening and closing of the nozzle valve. These were controlled by computer-based regulation to enable a consistent testing basis. – 1st measurement series 6 cycles 0.5 s open, 0.5 s closed – 2nd measurement series 6 cycles 10.0 s open, 3.0 s closed – 3rd measurement series 6 cycles 0.5 s open, 1.0 s closed – Opening speed 340 ms Figure 78 – Closing speed 300 ms

Figure 78: Opening time 340 ms, closing time 300 ms

PAGE

86

E B O R SEP

LE

Figure 79: Measurement bench test setup, nozzle with constant actuation via hydraulic cylinder for data collection during spray pulses

As described in section 1.8, a hydraulic load was applied to various methods of pressure reduction in order to simulate the typical withdrawing of fire-fighting water during a fire. The following typical methods of pressure reduction Figure 80 were considered: – Baffle plates as static, fixed flow inhibitors, primary pressure* 1.2 MPa / selected secondary pressures, integrated into hose connection valve Figure 56 – Pressure reducing valve, primary pressure*: 2.40 MPa - Secondary pressure*: 0.45; 0.60; 0.80 MPa – Pressure control valve, primary pressure*: 2.40 MPa - Secondary pressure*: 0.45; 0.60; 0.80 MPa – Bypass line, primary pressure*: 2.40 MPa - Secondary pressure*: 0.80 MPa – Speed regulation, Hmax: 2.40 MPa - Secondary pressure*: 0.80 MPa

Figure 80: Test setup with depiction of the measurement points for primary and secondary pressure

87

PAGE

2 Figure 99: Euro nozzle according to DIN EN 671 for trained personnel, measurement of the x component Figure 100: Euro nozzle according to DIN EN 671 for trained personnel, measurement of the z component

Figure 101: CM nozzle, measurement of the z component Figure 102: CM nozzle, measurement of the z component

Figure 103: AWG nozzle (23), measurement of the x component Figure 104: AWG nozzle (23), measurement of the z component

Figure 105: Akron Brass nozzle (28), measurement of the x component Figure 106: Akron Brass nozzle (28), measurement of the z component

PAGE

104

HYDRAULIC MEASUREMENTS AND CALCULATIONS

LE

E B O R SEP

Note on the base force

E B O R SEP

LE

The hose connection between the mounting frame with nozzle and the flow meter has a bend similar to an actual fire-fighting situation. It should be noted here that the hose bend, water content and device weight exert a base force Figure 112 on the fire department fire fighter even while no water is being withdrawn42. This can vary depending on the hose path and the specific conditions. The conditions present on the test bench can be considered optimal; in an actual fire-fighting incident, it is likely that less favorable conditions Figure 36 will cause the actual base force to differ from the one measured here. 2.3.3

MEASUREMENT RESULTS

The detailed measurement results with specification of the x and z force components can be found in the scientific appendix A3. 2.3.4

SUMMARY

The total force exerted by the nozzle on the nozzle operator is comprised of the two force components Appendix A3.2.4. Figure 107 lists the most important measurement values for an individual nozzle, whereby interpolation and extrapolation with the best-fit curves of the measurement values were performed for the individual force components. Detailed measurement results can be found in the scientific appendix A2 . As expected, the total force at the fire department nozzles rises with residual pressure* and flow rate. On the other hand, the Euro nozzle for trained personnel Figure 13 exhibits a nearly constant offset of both force components of roughly 118 N, which only changes negligibly up to a residual pressure* of 2.5 MPa. In the measurement of the Euro nozzle, it must be considered that this was also operated with a fire department flexible hose via an adapter for the purpose of simplifying the measurement. If the Euro nozzle is operated as usual via a 25 mm dimensionally stable hose, the base load declines further.

42 Stream impulse

105

PAGE

E B O R SEP

LE

4 PAGE

124

E B O R SEP

LE

Fire Protection Research SAFE FIRE-FIGHTING WATER SUPPLY TO HYDRANTS IN HIGH-RISES AND LARGE PROPERTIES

4 SUBJECTIVE EVALUATION OF THE RESIDUAL PRESSURES ON THE NOZZLE VIA PRACTICAL TESTING

125

PAGE

4

SUBJECTIVE EVALUATION OF THE RESIDUAL PRESSURES ON THE NOZZLE VIA PRACTICAL TESTING

E B O R SEP

LE

4.6.3

OVERVIEW OF THE SUBJECTIVE EVALUATION WITHOUT THE USE OF PRESSURE REDUCTION COMPONENTS

4.7

RESULT OF THE FIRST SUBJECTIVE52 EVALUATION WITH THE USE OF PRESSURE REDUCTION COMPONENTS (BAFFLE PLATES)

4.7.1

GENERAL FORCES AT THE NOZZLE

Figure 122: Overview of the subjective evaluation in relation to residual pressure without the use of pressure reduction components

Independent of the manufacturer, the forces at the nozzle for a prolonged water withdrawal are reasonable up to 0.7 MPa and on CM nozzles between 0.8 and 0.9 MPa. The discharging of spray pulses in connection with baffle plates Section 1.8.5 is however only possible to a limited extent, regardless of the nozzle type and model. Discharging a number of spray pulses, as performed during fire fighting in residential buildings, only generates reasonable forces under limited conditions due to the force changes emitting from the nozzle. When discharging spray pulses Figure 35 in connection with upstream baffle plates, the flexible hose is subjected to extreme dynamic loads. These occur regardless of a relevant residual pressure. Upon closing of the nozzle, the pressure increases tremendously. Upon opening of the valve, the residual pressure feels like it falls to 0 MPa before subsequently stabilizing.

52 Not representative

PAGE

130

4.7.2

FIRST SUBJECTIVE53 EVALUATION OF THE USE OF BAFFLE PLATES FOR 100 L/MIN

E B O R SEP

LE

It should be noted in principle that when using baffle plates with a fixed discharge rate of 100 l/min and a rate setting at the nozzle of > 200 l/min Figure 61, the spray pattern will typically collapse or be considered insufficient. At residual pressures of 0.3 MPa and a rate setting at the fog nozzle of 100 or 130 l/min Figure 124 and 140, the spray pattern is insufficient. Even at residual pressures of 0.45 MPa and manufacturer-specific settings at the nozzle of 135 l/min, the use is only possible to a limited extent.

Figure 123: Water withdrawal at the fog nozzle with 0.3 MPa and upstream baffle plate for 100 l/min, fog stream

Figure 124: Water withdrawal at the fog nozzle with 0.3 MPa and upstream baffle plate for 100 l/min, insufficient solid stream

53 Not representative

131

PAGE

E B O R SEP

LE

5 PAGE

134

E B O R SEP

LE

Fire Protection Research SAFE FIRE-FIGHTING WATER SUPPLY TO HYDRANTS IN HIGH-RISES AND LARGE PROPERTIES

5 HUMAN FACTORS EVALUATION OF THE HOLDING FORCES AT THE NOZZLE

135

PAGE

5

HUMAN FACTORS EVALUATION OF THE HOLDING FORCES AT THE NOZZLE

5.2

E B O R SEP

LE

ELECTROMYOGRAPHIC STRAIN MEASUREMENTS

The handling of nozzles results in strain on muscles of the hand-arm-shoulder system. A precise quantification of the local strain on the muscles used during fire fighting is possible by means of electromyography. The electromyographic activity (EA) was recorded via bipolar electrodes and a mobile recorder Figure 127 and saved on a computer over a WLAN connection.

Figure 127: Recording of the muscle activity via surface electrodes in the hand-arm-shoulder area of the right arm

Because amplitude values from electromyographic electrodes cannot be directly interpreted as strain data (85), reference values for the maximum force deliverable by a muscle were obtained by recording the electromyographic activity during maximum voluntary contractions58. With these measurement values, in connection with the resting activity EA0, it was possible to calculate standardized and relativized electromyographic activities for representation of the muscle strain in all work phases. A series of muscles in the hand-arm-shoulder system as well as the torso primarily participate in the handling of nozzles. As shown in a previous study (86), the bottleneck in the physical strain produced by a nozzle clearly lies in the arm and shoulder area. On the basis of this study, all relevant muscles and muscle parts of the arm and shoulder Figure 128 were selected for an initial preliminary test. Only muscles whose contours are easy to feel59 came into question here. In addition, the muscle to be measured had to be large enough for the application of surface electrodes (87).

58 The voluntary contraction is the maximum contraction deliverable by the muscle, i.e. its maximum strength. It is also referred to as the maximum voluntary contraction (MVC). 59 A general requirement in surface electromyography

PAGE

140

E B O R SEP

LE

Figure 128: Selection of the muscles and muscle parts for the preliminary test

The results of the preliminary tests60 showed that the muscle strain is greatest in the right hand-arm-shoulder system for fire department nozzles. Out of 18 muscles measured in the preliminary test, the 8 most heavily strained muscles and muscle parts Figure 129 were selected. Seven of these muscles are located in the 60 Assumption: The nozzle is held with the right hand and operated and guided with the left hand.

141

PAGE

5

HUMAN FACTORS EVALUATION OF THE HOLDING FORCES AT THE NOZZLE

E B O R SEP

LE

If it is necessary during fire fighting to discharge larger volumes of water67 for user protection Footnote 15 and Figure 31 or for cooling pyrolysis gases, the line cross-section reduction Figure 83 and 84 makes this no longer possible. Physically speaking, the use of baffle plates decreases the residual pressure* in addition to reducing the flow rate. In this regard, the stream pattern and the possible user protection were rated negatively by the test subjects. In particular, the fire department fire fighters estimated the penetration depth of the fog stream and the prevailing droplet size as insufficient for fire fighting.

Both parameters are important during actual fire fighting in order to bring the fire-fighting water far enough into a burning structure, to cool fire gases or to ensure safety distances, e.g. when opening doors. It should be noted in this context that in the framework of the human factors investigation Section 5, only baffle plates for a calculated flow rate of 200 l/min at a secondary pressure* of 0.45 and 0.8 MPa were evaluated. When using baffle plates with a precalculated value of 100 l/min Figure 61 at a secondary pressure*of 0.3 to 0.7 MPa, the concerns stated above become considerably more pronounced. A preliminary test with a precalculated baffle plate Figure 61 for 100 l/min at 0.3 MPa in connection with a fog nozzle was interrupted. No effective water discharging Section 4.7.2 was achieved. The insights from the preliminary tests at the State Fire-Fighting School of Saxony were confirmed. The use of baffle plates must be evaluated negatively from a safety perspective.

Figure 140: A preliminary test with a precalculated baffle plate for 100 l/min at 0.3 MPa in connection with a fog nozzle was interrupted. No effective water discharging was achieved.

67 Typical in Germany: 400 l/min for user protection

PAGE

154

5.5.1.2

E B O R SEP

LE

PRESSURE REDUCING VALVES, PRESSURE CONTROL VALVES

For water supply via a pressure control valve, the hydraulic measurement results previously determined by means of fluid mechanics Section 2.3.4 and 2.4.6 were confirmed with the test subjects. During the fire-fighting tactic of discharging spray pulses, the residual pressure* falls to 0 MPa and the water supply comes briefly to a stop. During sustained discharging of fire-fighting water, a delay of approx. 10 s occurs between opening of the nozzle and achieving of the set residual pressure* With regard to the muscular strain, the results obtained with the supply of water via a pressure control valve were similar to those of the reference measurement.

Figure 141: Pressure drop and delay in water delivery for water supply via pressure control valve

In this case, the EA was somewhat less than for supply via the fire engine. This measurement result can be attributed to the fact that the repeated and significant pressure drops at the nozzle68 Figure 82 led to longer load pauses and subsequently to less muscular strain. From the perspective of the fire department fire fighters, the pressure control valves used in the main flow Section 1.8.4 as well as the baffle plates Section 1.8.5 for pressure reduction in a hydrant fire-fighting water supply Appendix A4.2.3.2 are rated as not safe.

68 During spray pulses and in connection with the pressure control valve used

155

PAGE

E B O R SEP

LE

6 PAGE

160

E B O R SEP

LE

Fire Protection Research SAFE FIRE-FIGHTING WATER SUPPLY TO HYDRANTS IN HIGH-RISES AND LARGE PROPERTIES

6 EVALUATION ACCORDING TO OCCUPATIONAL SAFETY LAWS OF TECHNICAL MEASURES FOR FIRE-FIGHTING WATER SUPPLY AND PRESSURE REDUCTION

161

PAGE

E B O R SEP

LE

PAGE

162

E B O R SEP

LE

6

EVALUATION ACCORDING TO OCCUPATIONAL SAFETY LAWS OF TECHNICAL MEASURES FOR FIRE-FIGHTING WATER SUPPLY AND PRESSURE REDUCTION

This section is dedicated to the following research question: What obligations apply to specialized engineers, experts, fire departments, public authorities or owners and operators on the basis of occupational safety laws concerning the safe functioning of the system and its impact on fire department fire fighters? Depending on the pressure regulation methods employed in fire-fighting water systems, fire department fire fighters are exposed to certain impacts. In addition to the limit values, these were determined both hydraulically and physiologically in the previous sections. The results are considered and evaluated from the perspective of the participating parties within a legal evaluation, which, due to the scope of this work, can only refer to the general European legal system and, more specifically, the German legal system. In general, these participating parties are specialized engineers, experts, fire departments and public authorities as well as owners and operators. 6.1

HAZARD ASSESSMENT AND PREPARATION OF THE FIRE DEPARTMENT

If high-rises are present in the operational area of a fire department, the fire department must (93) consider during the scope of their deployment preparations the specific dangers that may be faced while fighting fires in such buildings. This is referred to as a hazard assessment. For smaller standard buildings, the fire-fighting water supply is realized by carrying the hose lines from the pump of the fire engine Figure 2 to the source of the fire. Introduction The tactic of carrying the hose from the fire engine Section 6.1 is not expedient in high-rises for hydraulic, ergonomic and occupational medical reasons Section 1.7.1 and Statt study (43), and the use of an insufficient fire-fighting water supply in special buildings can lead to a significant endangerment or unreasonably high burden on the fire department fire fighters. The deployment concept for fire fighting in high-rises is therefore based on the technical measures present in high-rises that the specific national and international standards Figure 144 provide for. The supply of fire-fighting water via hose stations in high-rises plays an essential role in the hazard assessment of the fire department.

163

PAGE

E B O R SEP

LE

7 PAGE

170

E B O R SEP

LE

Fire Protection Research SAFE FIRE-FIGHTING WATER SUPPLY TO HYDRANTS IN HIGH-RISES AND LARGE PROPERTIES

7 ANALYSIS AND EVALUATION OF TECHNICAL MEASURES FOR PRESSURE REDUCTION

171

PAGE

E B O R SEP

LE

PAGE

172

7

E B O R SEP

LE

ANALYSIS AND EVALUATION OF TECHNICAL MEASURES FOR PRESSURE REDUCTION

This section is dedicated to the following research questions:

– How should the individual pressure regulation methods in fire-fighting water systems be evaluated within the scope of a risk analysis? – What generally applicable safety requirements on the supply of fire-fighting water to hydrants can be derived from the research? The risk associated with the individual technical measures for pressure reduction should be analyzed within the framework of an evaluation process based on DIN EN ISO 14121-1 (98). The functional requirements are derived according to the risk graph (98). Unless otherwise specified, the evaluation of the probability and likelihood of occurrence takes place subjectively based on the experiences of the authors. Calculated probabilities are presented along with a description of the process. The detailed analyses and conclusions concerning the evaluations are presented in the appendix A5. 7.1

SUMMARY OF THE RISK ANALYSIS

In principle, it can be stated in advance that all except for two of the investigated methods of pressure reduction Section 5.5.1.1 and 2.1.3 are suitable for this purpose, provided that certain special requirements are complied with. The types of fire-fighting water supply systems listed below are suitable for meeting the requirements of testing and use during fire fighting independent of the required flow rate, e.g. 750 l/min and assuming compliance with the pressure limits: – Single-line supply – Serial connection of pressure booster stations – Serial connection of pressure booster stations with intermediate tank – Pressure reduction valves without pilot valves in the main flow77 – Pressure reduction valves in the side flow or pump bypass line – Speed regulation These methods produce no significant hydraulic shocks. The ability of fire department fire fighters to absorb the forces arising at the nozzle is ensured both for spray pulses Section 1.6 and sustained water withdrawal. It must further be noted with regard to the method utilizing pressure control valves that statutory bans and official recommendations to avoid Section 1.8.4 this technology exist in some regions.

77 Pressure reduction valves in the main flow of the fire-fighting water system should be avoided section 1.8.4.1 due to their high probability of failure in connection with debris particles.

173

PAGE

7

ANALYSIS AND EVALUATION OF TECHNICAL MEASURES FOR PRESSURE REDUCTION

7.2.2

E B O R SEP

LE

ADDITIONAL SYSTEM-SPECIFIC REQUIREMENTS

In addition to the general requirements in section 7.2.1, other system-specific conditions must be considered in accordance with the pressure regulation method employed. These are listed below. 7.2.2.1

SERIAL CONNECTION OF PRESSURE BOOSTER STATIONS WITH INTERMEDIATE TANK

Scientific appendix: A5.3 – The intermediate tank must be equipped with an emergency overflow. This must be reliably drained. – The overflow must be constantly monitored. 7.2.2.2

PRESSURE REDUCTION VIA PRESSURE REDUCTION VALVES IN THE MAIN FLOW OF THE LINE SYSTEM

Scientific appendix: A5.4 Even if no national statutory ban on the technology exists, pressure reducing valves in fire-fighting water systems Section 1.8.4.1 should be avoided. If this is not possible, valves should be used that - Generate no appreciable negative or positive hydraulic shocks during use of the fire-fighting water80 Figure 114 - Withstand the maximum prevailing pressure under a thermal load (18) (58) - Are not sensitive to debris particles Figure 43 and 44 In event of the failure of a pressure reduction valve, the fire-fighting water supply must be automatically ensured via suitable measures Figure 380 such as redundancy. If impermissible pressures occur during a failure, the expanding water must be diverted via a suitable safety switch Figure 382 without influencing the fire-fighting water supply. 7.2.2.3

PUMP BYPASS LINE WITH PRESSURE REDUCTION VALVE IN THE SIDE FLOW

Scientific appendix: A5.7 - Upon failure of the pressure reduction valve, the flow through the valve must be automatically interrupted. - With regard to the control sites in the pump bypass, a single control valve section Appendix A5.7 and Section 1.8.7 is considered sufficient.

80 In the non-representative investigation above, pressure control valves proved to be unsuitable.

PAGE

178

7.2.2.4

SPEED REGULATION

Scientific appendix: A5.8

E B O R SEP

LE

– If triggering takes place at a limit switch*, the required flow rate and pressure must be ensured within < 2 s Section 2.2.3 at this position. – If the signaling lines are completely or partially interrupted outside of the pressure booster station installation room due to a fire, this position must be detected and the required flow rate and pressure at the fire location must be ensured. – If the signaling lines are completely or partially interrupted outside of the pressure booster station installation room due to a fire and if a triggering also takes place at a limit switch*, the required flow rate and pressure must be ensured within < 2 s Section 2.2.3 at this location. – In event of multiple triggerings at the limit switch* Section 2.2.3, the required flow rate and pressure must be ensured within < 2 s at the highest triggering site. – After shut-off of a fire-fighting water request or after a fault, the optimal operational readiness of the entire system must be restored automatically. – The signaling line must be constantly monitored for cable break, short-circuit and triggering. (18) – A triggering of the signaling line must be forwarded to a constantly staffed station. (18) – Frequency inverters must not switch off in event of excess current; instead, they must only report this error. Speed regulation is only suitable with limitations for buildings that are evacuated via the top floor

179

PAGE

BIBLIOGRAPHY

LE

E B O R SEP

PAGE

202

E B O R SEP

LE

1.

Kunkelmann. Bericht 142: Verhalten von ungeschützten trockenen Steigleitungen bei direkter Flammeneinwirkung. 2007. Point 8.

2.

Fire brigade München, Germany. 2012.

3.

Stellungnahme des Arbeitskreises Vorbeugender Brandschutz des Landesfeuerwehrverbandes Hessen und Arbeitsgemeinschaft der Leiter der Berufsfeuerwehren in der Bundesrepublik Deutschland vom Arbeitskreis Vorbeugenden Brandschutz – Hessen. 2011.

4.

Fachausschuss Vorbeugender Gefahrenschutz des Landesfeuerwehrverbandes Hessen e.V.

5.

Arbeitskreis Vorbeugender Gefahrenschutz der Arbeitsgemeinschaft der Leiter der Berufsfeuerwehren Hessen.

6.

National Fire Protection Association, [Ed.]. NFPA 14 - Standard for the Installation of Standpipe and Hose Systems. Quincy, USA : s.n., 2013.

7.

Havel. Burlington, WI, USA

8.

Havel, Burlington WI, USA. originally published on www.fireengineering.com. [Online] Juni 2008. http://www.fireengineering.com/articles/2008/06/construction-concerns-class-iii-standpipes.html.

9.

National Fire Protection Association, [Ed.]. NFPA 14. Quincy, USA : s.n., 2013. Point 7.8.1.

10. —.

NFPA 14. Quincy, USA : s.n., 2013. Point 7.2.

11. —.

NFPA 14. Quincy, USA : s.n., 2013. Point 7.10.

12.

FM Global, [Ed.]. DS 2-8N – Planung und Einbau von Sprinkleranlagen. 2000.

13. —.

DS 4-4 N – Standpippe and Hose Systems. 2001.

14. —.

DS 1-3 – High-Rise Buildings. 2012.

15. —.

DS 4-4 N – 1.1 Changes Standpipe and Hose Systems. 2001.

16.

Fachkommission Bauaufsicht Projektgruppe MHHR. Muster-Hochhaus-Richtlinie über den Bau und Betrieb von Hochhäusern – MHHR. 2008.

17.

Fachkommision Bauaufsicht Projektgruppe MHHR, Muster Hochhaus-Richtlinie. amtlicher Kommentar Muster-Hochhaus-Richtlinie . Berlin, Germany : s.n., 2008.

18.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN 14462 Löschwassereinrichtungen – Planung, Einbau, Betrieb und Instandhaltung von Wandhydrantenanlagen sowie Anlagen mit Über- und Unterflurhydranten. Berlin, Germany : Beuth Verlag GmbH, 2012.

19. —.

Norm DIN 14461-1 Feuerlösch-Schlauchanschlusseinrichtungen – Teil 1: Wandhydrant mit formstabilem Schlauch. Berlin, Germany : Beuth Verlag GmbH, 2003.

20. —.

Norm DIN EN 671-1 Ortsfeste Löschanlagen - Wandhydranten – Teil 1: Schlauchhaspeln mit formstabilem Schlauch. Berlin, Germany : Beuth Verlag GmbH, 2012.

21. —.

Norm DIN EN 694 Feuerlöschschläuche – Formstabile Schläuche für Wandhydranten. Berlin, Germany : Beuth Verlag GmbH, 2007.

22. —.

Norm DIN 14461-3 Feuerlösch-Schlauchanschlusseinrichtungen – Teil 3: Schlauchanschlussventile PN 16. Berlin, Germany : Beuth Verlag GmbH, 2006.

23.

AWG Fittings GmbH. Lederstraße 30 - 36, 89537 Giengen an der Brenz, Germany.

24.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN EN 15182-3 Strahlrohre für die Brandbekämpfung – Teil 3: Strahlrohre mit Vollstrahl und/oder einem unveränderlichen Sprühstrahlwinkel PN 16. Berlin, Germany : Beuth Verlag GmbH, 2010.

25.

de Vries. Brandbekämpfung mit Wasser und Schaum - Technik und Taktik. [Ed.] Ulrich Cimolino. 3rd edition. Landsberg, Germany : Verlagsgruppe Hüthig Jehle Rehm GmbH, 2008.

26.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN EN 15182-2 Strahlrohre für die Brandbekämpfung – Teil 2: Hohlstrahlrohre PN 16. Berlin, Germany : Beuth Verlag GmbH, 2010.

27.

National Fire Protection Association, [Ed.]. NFPA1964. Quincy, USA : s.n., 2013.

28.

Akron Brass Company. 343 Venture Blvd, 44691 Wooster, Ohio, USA.

203

PAGE

BIBLIOGRAPHY

30.

31.

32. —. 33.

34. 35. 36. 37. 38. 39. 40. 41. 42. 43.

44. 45.

46. 47. 48.

49. 50. 51.

52.

PAGE

E B O R SEP

LE

29.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN EN 14367 Systemtrenner mit unterschiedlichen nicht kontrollierbaren Druckzonen – Familie C, Typ A. Berlin, Germany : Beuth Verlag GmbH, 2005. de Vries. Messungen des Druckverlaufs an mit Wasser oder Druckluftschaum betriebenen Feuerlöschschläuchen und deren Konsequenzen für die Brandbekämpfung. Norderstedt, Germany : Libri Books on Demand, 2009. DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN 14462 Löschwassereinrichtungen - Planung und Einbau von Wandhydrantenanlagen und Löschwasserleitungen. Berlin, Germany : Beuth Verlag GmbH, 2009. Norm DIN 14462 Löschwassereinrichtungen – Planung und Einbau von Wandhydrantenanlagen und Löschwasserleitungen. Berlin, Germany : Beuth Verlag GmbH, 2007. Pleß, Seliger. Taktik des mobilen Löscheinsatzes bei Thermoplasten, Teil 2: Bewertung der Löschwirkung bei unterschiedlichen Thermoplasten an ebenen Flächen und geometrischen Körpern, Forschungsbericht Nr. 92. Institut der Feuerwehr Sachsen-Anhalt. Heyrothsberge, Germany : s.n., 1994. Muricial Authority of Frankfurt am Main, Fire Safety Directorate, Germany. Wahrscheinlichkeit für das Auftreten gleichzeitiger Einsatzereignisse bei der Feuerwehr Bochum. Kreft. 29 May 1998. Analyse von Bränden mit Personenschäden bei der Feuerwehr Bochum für die Jahre 92 bis 97. Katzmann. 15 January 1998. Stadtwerke Bochum GmbH, [Ed.]. Geschäftsbericht 2010. Bochum, Germany: s.n. Agencia EFE. Espronceda 32, 28003 Madrid, Spain. Ayuntamiento de Madrid, Subdirección General de Bomberos. Auskunft über Einsatzbericht der Feuerwehr per E-Mail. Madrid, Spain : s.n., 11 February 2013. de Vries. Hamburg, Germany. Fuchs, Demant, Eriksson. Handhabung von Hohlstrahlrohren bei der Innenbrandbekämpfung,In: brandschutz Deutsche Feuerwehr-Zeitung. 2009, 8, S. 616 - 621. Schiralli. E-Mail. [Ed.] FDNY. New York, USA, 10 April 2013. Finteis, Oehler, Genzwürker, Hinkelbein, Dempfle, Becker, Ellinger. Stressbelastung von Atemschutzgeräteträgern bei der Einsatzsimulation im Feuerwehr-Übungshaus Brucksal Landesfeuerwehrschule Baden-Württemberg (STATT-Studie). Mannheim, Germany : s.n., 2002. FM Global, [Ed.]. DS 3-7 – Sprinklerpumpen. 2008. DIN Deutsches Institut für Normung e. V., [Ed.]. Norm 14462 Löschwassereinrichtungen – Planung, Einbau, Betrieb und Instandhaltung von Wandhydrantenanlagen sowie Anlagen mit Über- und Unterflurhydranten; Beiblatt 1: Druckregelarmaturen. Berlin, Germany : Beuth Verlag GmbH, 2012. Industrieverband Fachgruppe Löschwassertechnik. Merkblatt bvfa-LW: 2012-02 (01) Löschwassertechnik in Hochhäusern. [Ed.] Bundesverband technischer Brandschutz e.V. Würzburg, Germany : s.n. National Fire Protection Association, [Ed.]. NFPA 14. Quincy, USA : s.n., 2013. Point 7.9. Heinrichs, Biskupek, Götsch, Haker, Klement, Köllisch, Neuhaus-Melsheimer, Ott, Petzolt, Rickmann. Kommentar zu DIN 14462 Löschwassereinrichtungen – Planung, Einbau, Betrieb und Instandhaltung. [Ed.] DIN Deutsches Institut für Normung e.V. Zentralverband Sanitär Heizung Klima. 1st edition. Berlin, Germany : Beuth Verlag GmbH, 2012. montgomerycountymd.gov. [Online] September 2007. http://www.montgomerycountymd.gov/content/firerescue/psta/inservice/PressureReducingFireHoseValves.pdf. Dalrymple. [Online] May 2007. http://www.conferenceworld.com.au/resources/other/12%20Adam%20 Dalrymple%20Wed%20am%20paper%202.pdf. McGrail. Buildingsonfire.com. Engine company standpipe operations pressure regulating devices. [Online] Christopher J. Naum, SFPE, 25 February 2011. http://buildingsonfire.com/engine-company-standpipe-operationspressure-regulating-devices. Shapiro. Standpipe and Hose Systems, Fire Protection Handbook. [Ed.] National Fire Protection Association (NFPA). Nineteenth Edition. 2003, page 91, volume II.

204

E B O R SEP

LE

53.

Manitou Inc. High-Rise Fire Service Study. Surrey, USA : s.n., 2008. http://www.surrey.ca/files/surrey_ high_rise_report_final_public.pdf.

54.

lifepr.de. [Online] unn United News Network GmbH, 3 September 2007. http://www.lifepr.de/pressemeldungen/gimaex-schmitz-fire-and-rescue-gmbh/boxid/14753.

55.

FM Global, [Ed.]. DS 2-0 – Installationsrichtlinien für automatische Sprinkler. 2010.

56. —.

DS 3-11 – Pressure reducing valves for fire protection service. 1995, revised Sept. 2000.

57. —.

DS 1-3 – 2.2.6 High-Rise Buildings. 2012.

58.

FM Approvals LLC, [Ed.]. Class Number 1362: Approval Standard for Pressure Reducing Valves. Norwood, MA, USA : s.n., 1984.

59.

British Standards Institution, [Ed.]. BS EN 806-2 Specifications for installations inside buildings conveying water for human consumption. Design. London, England : s.n., 2005.

60.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN 1988 Trinkwasser-Leitungsanlagen in Grundstücken; Technische Bestimmungen für Bau und Betrieb. Berlin, Germany : Beuth Verlag GmbH, 1962.

61. —.

DIN 1988-5 Technische Regeln für Trinkwasser-Installationen (TRWI); Druckerhöhung und Druckminderung; Technische Regel des DVGW. Berlin, Germany : Beuth Verlag GmbH, 1988.

62. —.

DIN 1988-6 Titel: Technische Regeln für Trinkwasser-Installationen (TRWI) – Teil 6: Feuerlösch- und Brandschutzanlagen – Technische Regel des DVGW. Berlin, Germany : Beuth Verlag GmbH, 1988.

63. —.

DIN EN 806-2 Technische Regeln für Trinkwasser-Installationen – Teil 2: Planung. Berlin, Germany : Beuth Verlag GmbH, 2005. Volumen Part 2.

64.

Götsch. Maximal 8 bar sind erlaubt - Fließdruck an Löschwasserentnahmestellen. SBZ Sanitär.Heizung. Klima. 2011, 19.2011.

65. —.

Druckbegrenzung von Bestands- und Neuanlagen - Sichere Löschwasserversorgung. BS Brandschutz in öffentlichen und privatwirtschaftlichen Gebäuden. 2011, 2/2011.

66. —.

Abnahmeverweigerung droht – Druckbegrenzung bei der Löschwasserversorgung. Sanitär + Heizungstechnik. 2011, Issue 8, August 2011.

67. —.

Druckbegrenzung von Bestands- und Neuanlagen für die Löschwasserversorgung. Moderne Gebäudetechnik. 2011, 6/2011.

68. —.

Bestands- und Neuanlagen: Druckbegrenzung für die Löschwasserversorgung. IKZ Fachplaner. 2011, March 2011.

69. —.

Sichere Abnahme. Feuerwehr - Retten Löschen Bergen. 2011, 4/2011.

70. —.

Druckbegrenzung von Bestands- und Neuanlagen für die Löschwasserversorgung. HLH - Organ des VDI für Technische Gebäudeausrüstung. 2011, volume 62, 2/2011.

71. —.

Maximal 8 bar Fließdruck an Löschwasserentnahmestellen. TGA Fachplaner. December 2010.

72.

Bauministerkonferenz, Konferenz der für Städtebau, Bau- und Wohnungswesen zuständigen Minister und Senatoren der Länder (ARGEBAU). Verwendbarkeitsnachweis für Druckminderer in Feuerlöschleitungen. [Ed.] Energie, Bauen, Wohnen und Verkehr des Landes Nordrhein-Westfalen Ministerium für Wirtschaft. Düsseldorf, Germany : s.n., 6 May 2011.

73.

GEP IndustrieSysteme GmbH. Fachlicher Standpunkt der Firma GEP Industrie-Systeme GmbH zur Verwendung von Druckminderern in Löschwasserleitungen. Zwönitz, Germany.

74.

Talis Holding Central Europe GmbH. Meeboldstraße 22, 89522 Heidenheim, Germany.

75.

Erhard GmbH & Co. KG. Meeboldstr. 22, 89522 Heidenheim, Germany.

76.

Tyco International Ltd. Freier Platz 10, 8200 Schaffhausen, Switzerland.

77.

Honeywell GmbH. Hardhofweg, 74821 Mosbach, Germany.

78.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN EN 12845 Ortsfeste Brandbekämpfungsanlagen – Automatische Sprinkleranlagen – Planung, Installation und Instandhaltung. Berlin, Germany : Beuth Verlag GmbH, 2009.

205

PAGE

BIBLIOGRAPHY

E B O R SEP

LE

79.

Kunkelmann. Bericht 142: Verhalten von ungeschützten trockenen Steigleitungen bei direkter Flammeneinwirkung. Karlsruhe, Germany : s.n., 2007.

80. —.

Bericht 142: Verhalten von ungeschützten trockenen Steigleitungen bei direkter Flammeneinwirkung. Karlsruhe, Germany : s.n., 2007, point 7, 8 and 9.

81. —.

Bericht 142: Verhalten von ungeschützten trockenen Steigleitungen bei direkter Flammeneinwirkung. 2007,point 9.

82.

Materialprüfanstalt Universität Stuttgart. Prüfbericht – Prüfkörper zu einer nassen Löschleitung DN100. Stuttgart, Germany : s.n., 2013.

83.

VDI Verein Deutscher Ingenieure e.V., [Ed.]. VDI Wärmeatlas. 7th edition. s.l. : VDI-Verlag Düsseldorf, Germany. 2007.

84.

Kemper. Löschwasserförderung. Fachwissen Feuerwehr. Heidelberg/München/Landsberg/Frechen/ Hamburg, Germany : ecomed SICHERHEIT, 2009.

85.

Kluth, Böhlemann, Strasser. A System for a Strain oriented Analysis of the Layout of Assembly Workplaces. Ergonomics. 1994. Page 1441-1448. 37 (9).

86.

Kluth, Pauly, Keller, Strasser. Evaluierung der ergonomischen Qualität von Strahlrohren zur Brandbekämpfung mittels elektromyographischer und subjektiver Methoden. Forschungsbericht. [Ed.] Universität Siegen. Siegen , Germany: s.n., 1999.

87.

Kluth. Physiologische Kosten repetitiver Bewegungen an planzeitorientierten Montagearbeitsplätzen mit sitzender Tätigkeitsausführung. Siegen, Germany : Höpner und Göttert, 1996.

88.

Böhlemann, Kluth, Kotzbauer, Strasser. Ergonomic Assessment of Handle Design by means of Electromyography and Subjective Rating. Applied Ergonomics. 1994. Page 346-354. 25 (6).

89.

Strasser, Lauber, Koch. Produkt-ergonomische Beurteilungsmethoden für handbetätigte Arbeitsmittel. Zeitschrift für Arbeitswissenschaft. 1990, 44 (16NF) 4, page 205-213.

90.

Penzkofer. Feldstudien zur Objektivierung von Belastung und Beanspruchung jüngerer und älterer Arbeitspersonen bei berufsbedingten Kälteexpositionen. Stuttgart, Germany : Ergonomia Verlag, 2013.

91.

Keller, Strasser. Elektromyographische und subjektive Methoden zur ergonomischen Beurteilung von Arbeitsmitteln – gezeigt am Beispiel einer Armauflage für manuelle Texteingabe. Zeitschrift für Arbeitswissenschaft. 1996, 50 (22NF).

92.

Strasser. Ergonomische Qualität handgeführter Arbeitsmittel – Elektromyographische und subjektive Beanspruchungsermittlung. Stuttgart, Germany : Ergon-Verlag GmbH, 2000.

93.

Deutsche Gesetzliche Unfallversicherung (DGUV), [Ed.]. BG-Vorschrift, Unfallverhütungsvorschrift, Grundsätze der Prävention - BGV A1. S. § 3 “Grundsätze der Prävention”. 2004.

94.

Hilfeleistung, Nohdurft in Zusammenarbeit mit der Fachgruppe Feuerwehren. GUV-I 8651 Sicherheit im Feuerwehrdienst – Arbeitshilfen für Sicherheit und Gesundheitsschutz. [Ed.] Bundesverband der Unfallkassen. München, Germany : s.n. January 2006, page 323, chapter C28, point 8 et sqq.

95.

Deutsche Gesetzliche Unfallversicherung (DGUV), [Ed.]. BG-Vorschrift, Unfallverhütungsvorschrift, Grundsätze der Prävention – BGV A1. 2004.

96.

Betriebssicherheitsverordung – BetrSichV. 2002 and subsequent revisions.

97.

Ministerium für Bauen und Verkehr des Landes NRW, [Ed.]. Verordnung über Bau und Betrieb von Sonderbauten (Sonderbauverordnung - SBauVO -). Düsseldorf, Germany : s.n., 2009.

98.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN EN ISO 14121-1 Sicherheit von Maschinen – Risikobeurteilung – Teil 1: Leitsätze. Berlin, Germany : Beuth Verlag GmbH, 2007.

99.

Rohmert. Statische Haltearbeit des Menschen. Berlin, Germany : Beuth Verlag, 1960.

100.

Radscheit, Diebold, Hornung. Kommentar zur DIN 1988 (edition 1962). 3. s.l. : A. W. Gentner Verlag Stuttgart, 1974. Point 5.6 - Einsatz von Druckminderer in Hochhäusern.

101. —. Kommentar zur Norm DIN 1988, edition 1955 (Excerpt). [Ed.] Klempner-, Kupferschmiede- und Zentralheizungsbauer-Handwerks Zentralverband des Installateur-. s.l. : A. W. Gentner Verlag Stuttgart.

PAGE

206

102.

E B O R SEP

LE

http://buildingsonfire.com/engine-company-standpipe-operationspressure-regulating-devices. [Online] 103. hendersonfireonline.com. [Online] http://www.hendersonfireonline.com/Henderson_Fire_Department/Pressure_Reducing_Valves_files/Pressure-Reducing%20Valves.pdf. 104. European Norm EN 2 Fire Classes A, B, C, D, F. 2005. 105. Dixon Powhatan. 800 High Street, Chestertown, MD 21620, USA. 106. Renus Armaturen GmbH. Im Teelbruch 80, 45219 Essen, Germany. 107. AWG Fittings GmbH. Beschreibung und Bedienungsanleitung Turbospritze 2400 C, EN 15182-2, Nr. 10071833 und Turbospritze 2400 B, EN 15182-2, Nr. 10072933. [Online] 2010. 108. Fire Classes. Wikipedia. [Online] February 2013. http://en.wikipedia.org/wiki/fire-classes. 109. National Fire Protection Association, [Ed.]. NFPA 14. Quincy, USA : s.n., 2013. Point 7.8.1.1. 110. —. NFPA 14. 2013. Point A7.10.1.2.1.1. 111. DIN Deutsches Institut für Normung e. V., [Ed.]. DIN EN 15182-3: Strahlrohre für die Brandbekämpfung.. mit unveränderlichen Winkel. Berlin, Germany : Beuth Verlag, 2010. 112. —. German version prEN671-1 Ortsfeste Löschanlagen – Wandhydranten – Teil 1: Schlauchhaspeln mit formstabilem Schlauch. 2006. 113. Bayrisches Staatsministerium des Innern. Richtlinien über die bauaufsichtliche Behandlung von Hochhäusern. October 1982. 114. Sonderbauverordnung Bundesland Nordrhein-Westfalen SBauVo, Teil 4. Hochhäuser Verordnung über den Bau und Betrieb von Sonderbauten. 2009. 115. Rieck. Feuerlöscharmaturen. 10th revised edition. Stuttgart/Berlin/Köln, Germany : W. Kohlhammer, 1991. 116. —. Feuerlöscharmaturen, 10th revised edition. Stuttgart/Berlin/Köln, Germany : W. Kohlhammer, 1991. 117. Larson. Janesville, CA, USA www.larsonnozzles.com. 118. GEP IndustrieSysteme GmbH. Brückenstr. 11, 08297 Zwönitz, Germany. Unless otherwise stated, the rights to the illustrations and images are held by GEP IndustrieSysteme GmbH, Zwönitz, Germany.

207

PAGE

INDEX

E B O R SEP

LE

Authority .....................................................................................6.4

Force direction ..........................................................Figure 108

Automatic nozzles .................................................... Figure 23

Forces at nozzle ..............................................Figure 148, 149

Baffle plates........... 1.8.5, 5.5, 5.5.1.1, 7, Figure 82, 83, 84

Hazard assessment ............................................6.1, 6.3, 7, A5

Base load ..................................................................................A3.2

Hose connection valve ........................................... Figure 10

Bernoulli................................................................1.8.5.3, 1.8.5.4

Hose station ...............................................................................1.3

Body postures .........................................A6, Figure 135, 139

Hot steam................................................................................ 6.4.2

CM nozzle....................................................................................1.4

Intermediate tank...............1.8.3, 7, A5, A5.3.2, Figure 40

Concurrency of fire incidents.................1.5.4, Figure 154

Investigator ................................................................................6.4

Debris particle............................................................. Figure 44

Kv value .......................................................................... Figure 10

DIN................................................................... 1, Figure 144, 145

Limit switch ................................................................Figure 386

Discharge speed .................................................................. 2.4.4

Limit value, structural engineering .....5.5.2, Figure 154

Electromyographic .........................................................5.1, 5.2

Limit value, hydraulics engineering......Figure 144, 154

Elevated tank ......................................................................... 1.8.6

Limit value, physiology .............................................. A4.2.1.2

Emergency overflow ......................................................A5.3.2

Load limit.......................................................................... A4.2.1.2

Environment ......................................................1.7, Figure 147

Loss of control ...........................................................Figure 109

Ergonomics ................................................................................5.5

Material test ...............................................................................3.4

Euro nozzle ....................................... 1.4, Figure 87, 154, 156

Measurment point .......................................................Figure 8

European Norm (EN) ..................................................................1

Measurment nozzle.................................................. Figure 66

Expanding water .....................................1.5.4.4, 3, 6.4, 6.4.2

Minimum flow rate ..........................5.5.2.3, Figure 26, 154

Filter ................................................................................. Figure 47 Fire engine ..................................................................Figure 126

Minimum residual pressure..................5.5.2.2, Figure 21, ................................................................................Figure 140, 154

Fire-fighting tactics.................................................................1.6

Muscle ..................................................................................5.2, A4

Fire-fighting water tactics ...................................Figure 146

NFPA ............................................................... 1, Figure 144, 154

Flashover ..............................................................................1.5.4.4

Nominal flow rate ..................................................... Figure 32

Flexible hose, burst .................................................Figure 142

Nominal flow rate setting .............................................1.4.2.2

Flow inhibitor, static ...........................................1.8.5, 5.5, 6.4

Occupational safety law .......................................................6.4

Flow rate ...............................................................................5.5.2.3

Operator ......................................................................................6.3

Flue gases........................................................................................6

Owner ...........................................................................................6.3

Fluid mecanics .......................................................... 2.3.4, 2.4.6

Person rescue ................................................................................1

FM Global ..................................................... 1, Figure 144, 145

Physiological..............................................................................5.5

Fog nozzle...........................................................1.4, Figure 154

Pilot valve ...................................................................... Figure 51

Force, dynamic..........................................................................2.1

Pipeline network calculation...........5.5.2.3.2, Figure 154

Force, static.....................................................2.3.1, Figure 107

Preliminary test.........................................................Figure 122

Force components...............................................................A3.2

Pressure control valve ......1.8.4, 1.8.7, 5.5.1.2, 5.5, 6.4, 7,

PAGE

208

E B O R SEP

LE

Pressure reducing valves.....................1.8.4, 6.4, 5.5, 7, A5

Serial connection of pressure booster stations .... 1.8.2, .................................................................................. 1.8.3,6.4, 7, A5

Pressure regulation method....1.8.8, 6.4, 7, A5, Figure 154

Shock pressure..................................2.1.1, 2.4.1, Figure 142

Pressure zones ..................................................................... 1.8, 7

Shock pressure, negative .................... 2.4.1, Figure 76, 82

Probability calculation ...................................................1.5.4.2

Shock pressure, positive..................... 2.4.1., Figure 77, 82

Property protection.........................................................1.8.4.1

Signalling line............................................................Figure 387

Protective water shield ........................................... Figure 61

Single-line supply........................................... 1.8.1, 6.4, 7, A5

Pump bypass .................................................... 1.8.7, 6.4, 7, A5

Solid stream ..................................................2.1.4.2, Figure 82

Purging of nozzle....................................................... Figure 49

Speed regulation ............................................ 1.8.8, 6.4, 7, A5

Pyrolysis gases ......................................................1.5.4.4, 1.6, 6

Spray angle.................................................................Figure 138

Questionnaire ........................................................................... A4

Spray pattern ...................Figure 14, 15, 66, 121, 123, 124

Reaction time ............................................................................2.2

Spray pulse .....................................................................................6

Real pressure method .................................. 1.8.8, 6.4, 7, A5

Spray pulse tactics ....................................1.6, 2.1, Figure 82

Recoil force .....................................................2.4.4, Figure 148

Test group ............................................................................... 5.3.2

Redundancy.........................................................A3.8.1, A5.1.3

Test nozzle .................................................................... Figure 66

Reference measurment .................................................... 2.1.2

Trained personnel .......................................................1.7.2, 1.3

Regulations, international .........................Figure 144, 145

Trained personnel nozzle..................1.4, Figure 87, 154, 156

Requirements, constructional ...........................................7.2

User protection.............................................................1.5.4.4, 6

Requirements, safety related .............................................7.2

Water damage ..........................................................................1.6

Requirements, technical ......................................................7.2

Water discharge, permanent ................2.1.4.2, Figure 82

Residual pressure, maximum... 5.5.2.1, Figure 109, 154

Water supply, combined ..............................1.3, Figure 5, 8

.......................................................................Figure 141, A4.2.3.2

Residual pressure, minimum.... 5.5.2.2, Figure 140, 154 Responsibility ................................................................................6 Risk analysis...................................6.1, 6.3, 7, A5, Figure 145 Rubble and debris............................................................1.5.4.3

209

PAGE

LE

E B O R SEP

E B O R SEP

LE

SAFE FIRE-FIGHTING WATER SUPPLY TO HYDRANTS IN HIGH-RISES AND LARGE PROPERTIES

SCIENTIFIC APPENDIX

SCIENTIFIC APPENDIX

E B O R SEP

LE

PAGE

212

E B O R SEP

LE

A1

FM Global certificate for pressure control valves with pilot valves, manufacturer Tyco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

A2

Measurement results for pressure and flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

A2.1

Reference measurement of shock pressures at the nozzle during spray pulses . . . . . . 221

A2.2 Measurement results when using baffle plates for pressure reduction . . . . . . . . . . . . . . 222 A2.2.1 Measurement results for shock pressures, pressure characteristic curve when using baffle plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 A2.2.2 Measurement results for sustained water withdrawal, flow rate and residual pressure when using baffle plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 A2.3

Measurement results for shock pressures when using pressure reduction valves . . . . 234

A2.4

Measurement results for pressure characteristic curve when using a pump bypass line with intermediate tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

A2.5

Measurement results for pressure characteristic curve when using speed-regulated pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A2.6

Measurement results for pressure characteristic curve when using a variable baffle plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A2.7

Summary of the measurements for pressure characteristic curve and flow rate for valves, regulating elements and flow inhibitors for pressure reduction in hydrant fire-fighting water systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

A2.8

Detailed information – fixed pressure or flow rate via baffle plates . . . . . . . . . . . . . . . . . . 244

A3

Measurement of static forces on the nozzle during fire fighting . . . . . . . . . . . . . . . . .247

A3.1 Measurement results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 A3.1.1 Determination of the x force component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 A3.1.2 Determination of the z force component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 A3.1.3 Resulting total force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 A3.2 Summary and discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 A3.2.1 Base load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 A3.2.2 x force component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 A3.2.3 z force component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 A3.2.4 Total force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 Human factors evaluation of the measurement results . . . . . . . . . . . . . . . . . . . . . . . . .259

SCIENTIFIC APPENDIX

A4

A4.1 Subjective survey methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 A4.1.1 Subjective survey of fire department fire fighters - Questionnaire . . . . . . . . . . . . . . . . 259 A4.1.2 Subjective survey of the trained personnel test group - Questionnaire . . . . . . . . . . . 269 A4.2 Experimental investigations on the strain effects of fire fighting . . . . . . . . . . . . . . . . . . . . 269 A4.2.1 Evaluation basis for the results of the electromyographic investigation of fire department fire fighters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 A4.2.1.1 Body posture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 A4.2.1.2 Determination of EA limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 A4.2.2 Evaluation of the results of the electromyographic investigation of fire

213

PAGE

CONTENS

E B O R SEP

LE

department fire fighters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 A4.2.2.1 Musculus biceps brachii (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 A4.2.2.2 Musculus flexor digitorum (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 A4.2.2.3 Musculus flexor carpi ulnaris (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278 A4.2.2.4 Musculus pronator teres (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 A4.2.2.5 Musculus extensor digitorum (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 A4.2.2.6 Musculus deltoideus, pars clavicularis (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 A4.2.2.7 Musculus triceps brachii (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 A4.2.2.8 Musculus triceps brachii (left) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 A4.2.3 Results of the subjective survey of the professional fire fighters during the simulated fire fighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 A4.2.3.1 Reference measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 A4.2.3.2 Pressure regulation with a pressure control valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300 A4.2.3.3 Pressure regulation with baffle plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 A4.2.4 Subjective evaluation of the physical strain during simulated fire fighting . . . . . . . . 303 A4.2.4.1 Reference measurement with fog nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 A4.2.4.2 Pressure regulation with a fire department centrifugal pump while using a CM nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305 A4.2.4.3 Water discharging via pressure control valve and fog nozzle. . . . . . . . . . . . . . . . . . . 306 A4.2.4.4 Water discharging via baffle plates and fog nozzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 A4.2.5 Results of the electromyographic investigation of the trained . . . . . . . . . . . personnel group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 A4.2.5.1 Presentation of the results of the electromyographic investigation of the trained personnel test group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 A4.2.5.2 Results of the subjective survey during the simulated fire fighting by the trained personnel group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 A5

Safety-related evaluation of technical measures for pressure reduction . . . . . . . . .317

SCIENTIFIC APPENDIX

A5.1 Risk analysis of the single-line supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317 A5.1.1 Scenario: Failure of measurement, control and regulation elements as well as the energy supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 A5.1.1.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 A5.1.1.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 A5.1.1.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 A5.1.1.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 A5.1.2 Summary of the requirements for single-line supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 A5.1.2.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 A5.1.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 A5.1.2.3 Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320 A5.2 Risk analysis of serial connection of pressure booster stations . . . . . . . . . . . . . . . . . . . . . . 321 A5.2.1 Scenario: Failure of measurement, control and regulation elements as well as the energy supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 A5.2.1.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321 A5.2.1.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

PAGE

214

E B O R SEP

LE

A5.2.1.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 A5.2.1.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 A5.2.2 Summary of the requirements for serial connection of pressure booster stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 A5.2.2.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 A5.2.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 A5.2.2.3 Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 A5.3

Risk analysis of serial connection of pressure booster stations with intermediate tank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 A5.3.1 Scenario: Failure of measurement, control and regulation elements as well as the energy supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 A5.3.1.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 A5.3.2 Scenario: Failure of the supply valves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 A5.3.2.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 A5.3.2.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 A5.3.2.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 A5.3.2.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 A5.3.3 Summary of the requirements for serial connection of pressure booster stations with intermediate tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 A5.3.3.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 A5.3.3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 A5.3.3.3 Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Risk analysis of pressure reduction valves in the main flow of the line system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 A5.4.1 Scenario: Failure of pressure reduction valves, blockage . . . . . . . . . . . . . . . . . . . . . . . . . 328 A5.4.1.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 A5.4.1.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 A5.4.1.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 A5.4.1.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 A5.4.2 Scenario: Failure of pressure reduction valves, sustained full opening . . . . . . . . . . . . 330 A5.4.2.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330 A5.4.2.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 A5.4.2.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 A5.4.2.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 A5.4.3 Scenario: Failure of measurement, control and regulation elements as well as the energy supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 A5.4.3.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 A5.4.4 Summary of the requirements for pressure reduction valves in the main flow of the line system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 A5.4.4.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 A5.4.4.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 A5.4.4.3 Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

A5.5

SCIENTIFIC APPENDIX

A5.4

Risk analysis of baffle plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

215

PAGE

CONTENS

E B O R SEP

LE

A5.5.1 Scenario: Hydraulic shocks and insufficient water supply . . . . . . . . . . . . . . . . . . . . . . . . 334 A5.5.1.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 A5.5.1.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 A5.5.1.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 A5.5.1.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 A5.5.2 Summary of the requirements for baffle plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335 A5.6

Risk analysis of elevated tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

A5.7 Risk analysis of a pump bypass line via pressure reduction valve in the side flow . . . . 336 A5.7.1 Scenario: Failure of pressure reduction valves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 A5.7.1.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 A5.7.1.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336 A5.7.1.4 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 A5.7.1.5 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 A5.7.2 Scenario: Failure of the supply valves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 A5.7.3 Summary of the requirements for a pump bypass line using a pressure reduction valve in the side flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 A5.7.3.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338 A5.7.3.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 A5.7.3.3 Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

SCIENTIFIC APPENDIX

A5.8 Risk analysis of speed regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 A5.8.1 Scenario: Standard case, triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 A5.8.1.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 A5.8.1.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 A5.8.1.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 A5.8.1.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 A5.8.2 Scenario: Complete cable break of the signaling line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 A5.8.2.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 A5.8.2.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 A5.8.2.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 A5.8.2.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 A5.8.3 Scenario: Partial cable break of the signaling line and triggering . . . . . . . . . . . . . . . . . 343 A5.8.3.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343 A5.8.3.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 A5.8.3.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 A5.8.3.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345 A5.8.4 Scenario: Parallel operation by multiple fire department fire fighters . . . . . . . . . . . . . 346 A5.8.4.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 A5.8.4.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346 A5.8.4.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 A5.8.4.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 A5.8.5 Scenario: Parallel operation by fire department fire fighter and trained personnel in the lowest floor and cable break . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

PAGE

216

E B O R SEP

LE

A5.8.5.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 A5.8.5.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 A5.8.5.3 System functional requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 A5.8.5.4 Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 A5.8.6. Scenario: Parallel operation by fire department fire fighters and trained personnel on the upper floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 A5.8.6.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 A5.8.6.2 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 A5.8.7 Scenario: Parallel operation by fire department fire fighters . . . . . . . . . . . . . . . . . . . . . . 353 A5.8.7.1 Scenario description case a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 A5.8.7.2 Scenario description case b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353 A5.8.7.3 Risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 A5.8.8 Scenario: Failure of measurement, control and regulation elements as well as the energy supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 A5.8.8.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 A5.8.9 Summary of the requirements for speed-regulated fire-fighting water systems . . . 356 A5.8.9.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 A5.8.9.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 A5.8.9.3 Hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357 Human factors determination of the body postures during fire fighting for right-handed persons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366 List of measurement equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366

SCIENTIFIC APPENDIX

A6

217

PAGE

SCIENTIFIC APPENDIX

E B O R SEP

LE

A1

PAGE

218

E B O R SEP

LE

FM GLOBAL CERTIFICATE FOR PRESSURE CONTROL VALVES WITH PILOT VALVES, MANUFACTURER TYCO

SCIENTIFIC APPENDIX

A1

219

PAGE

SCIENTIFIC APPENDIX

E B O R SEP

LE

A2

PAGE

220

A2 A2.1

E B O R SEP

LE

MEASUREMENT RESULTS FOR PRESSURE AND FLOW RATE REFERENCE MEASUREMENT OF SHOCK PRESSURES AT THE NOZZLE DURING SPRAY PULSES

No. 11 Reference measurement 0.80 MPa, AWG pressure characteristic curve

Figure 158: Reference measurement 0.8 MPa, AWG nozzle

Figure 159: Maximum negative shock pressure

Figure 160: Maximum positive shock pressure

221

PAGE

SCIENTIFIC APPENDIX

Primary pressure* / secondary pressure*: 0.8 MPa Nozzle type: AWG Rated setting* on the nozzle: Fog stream 235 l/min Measured flow rate: 270 l/min

BIBLIOGRAPHY

LE

E B O R SEP

PAGE

202

E B O R SEP

LE

1.

Kunkelmann. Bericht 142: Verhalten von ungeschützten trockenen Steigleitungen bei direkter Flammeneinwirkung. 2007. Point 8.

2.

Fire brigade München, Germany. 2012.

3.

Stellungnahme des Arbeitskreises Vorbeugender Brandschutz des Landesfeuerwehrverbandes Hessen und Arbeitsgemeinschaft der Leiter der Berufsfeuerwehren in der Bundesrepublik Deutschland vom Arbeitskreis Vorbeugenden Brandschutz – Hessen. 2011.

4.

Fachausschuss Vorbeugender Gefahrenschutz des Landesfeuerwehrverbandes Hessen e.V.

5.

Arbeitskreis Vorbeugender Gefahrenschutz der Arbeitsgemeinschaft der Leiter der Berufsfeuerwehren Hessen.

6.

National Fire Protection Association, [Ed.]. NFPA 14 - Standard for the Installation of Standpipe and Hose Systems. Quincy, USA : s.n., 2013.

7.

Havel. Burlington, WI, USA

8.

Havel, Burlington WI, USA. originally published on www.fireengineering.com. [Online] Juni 2008. http://www.fireengineering.com/articles/2008/06/construction-concerns-class-iii-standpipes.html.

9.

National Fire Protection Association, [Ed.]. NFPA 14. Quincy, USA : s.n., 2013. Point 7.8.1.

10. —.

NFPA 14. Quincy, USA : s.n., 2013. Point 7.2.

11. —.

NFPA 14. Quincy, USA : s.n., 2013. Point 7.10.

12.

FM Global, [Ed.]. DS 2-8N – Planung und Einbau von Sprinkleranlagen. 2000.

13. —.

DS 4-4 N – Standpippe and Hose Systems. 2001.

14. —.

DS 1-3 – High-Rise Buildings. 2012.

15. —.

DS 4-4 N – 1.1 Changes Standpipe and Hose Systems. 2001.

16.

Fachkommission Bauaufsicht Projektgruppe MHHR. Muster-Hochhaus-Richtlinie über den Bau und Betrieb von Hochhäusern – MHHR. 2008.

17.

Fachkommision Bauaufsicht Projektgruppe MHHR, Muster Hochhaus-Richtlinie. amtlicher Kommentar Muster-Hochhaus-Richtlinie . Berlin, Germany : s.n., 2008.

18.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN 14462 Löschwassereinrichtungen – Planung, Einbau, Betrieb und Instandhaltung von Wandhydrantenanlagen sowie Anlagen mit Über- und Unterflurhydranten. Berlin, Germany : Beuth Verlag GmbH, 2012.

19. —.

Norm DIN 14461-1 Feuerlösch-Schlauchanschlusseinrichtungen – Teil 1: Wandhydrant mit formstabilem Schlauch. Berlin, Germany : Beuth Verlag GmbH, 2003.

20. —.

Norm DIN EN 671-1 Ortsfeste Löschanlagen - Wandhydranten – Teil 1: Schlauchhaspeln mit formstabilem Schlauch. Berlin, Germany : Beuth Verlag GmbH, 2012.

21. —.

Norm DIN EN 694 Feuerlöschschläuche – Formstabile Schläuche für Wandhydranten. Berlin, Germany : Beuth Verlag GmbH, 2007.

22. —.

Norm DIN 14461-3 Feuerlösch-Schlauchanschlusseinrichtungen – Teil 3: Schlauchanschlussventile PN 16. Berlin, Germany : Beuth Verlag GmbH, 2006.

23.

AWG Fittings GmbH. Lederstraße 30 - 36, 89537 Giengen an der Brenz, Germany.

24.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN EN 15182-3 Strahlrohre für die Brandbekämpfung – Teil 3: Strahlrohre mit Vollstrahl und/oder einem unveränderlichen Sprühstrahlwinkel PN 16. Berlin, Germany : Beuth Verlag GmbH, 2010.

25.

de Vries. Brandbekämpfung mit Wasser und Schaum - Technik und Taktik. [Ed.] Ulrich Cimolino. 3rd edition. Landsberg, Germany : Verlagsgruppe Hüthig Jehle Rehm GmbH, 2008.

26.

DIN Deutsches Institut für Normung e. V., [Ed.]. Norm DIN EN 15182-2 Strahlrohre für die Brandbekämpfung – Teil 2: Hohlstrahlrohre PN 16. Berlin, Germany : Beuth Verlag GmbH, 2010.

27.

National Fire Protection Association, [Ed.]. NFPA1964. Quincy, USA : s.n., 2013.

28.

Akron Brass Company. 343 Venture Blvd, 44691 Wooster, Ohio, USA.

203

PAGE

A4

HUMAN FACTORS EVALUATION OF THE MEASUREMENT RESULTS

SCIENTIFIC APPENDIX

LE

E B O R SEP

PAGE

268

A4.1.2

SUBJECTIVE SURVEY OF THE TRAINED PERSONNEL TEST GROUP - QUESTIONNAIRE

A4.2

EXPERIMENTAL INVESTIGATIONS ON THE STRAIN EFFECTS OF FIRE FIGHTING

E B O R SEP

LE

The results of the electromyographic investigation of fire department fire fighters and trained personnel are presented below. A differentiation according to the 8 investigated muscles and muscle parts was performed here. The results of the subjective survey supplement the measured values.

EVALUATION BASIS FOR THE RESULTS OF THE ELECTROMYOGRAPHIC INVESTIGATION OF FIRE DEPARTMENT FIRE FIGHTERS A4.2.1.1 BODY POSTURE

SCIENTIFIC APPENDIX

A4.2.1

The values recorded in all sub-tests were compiled for the sustained discharging of water at the solid stream setting, with spray pulses and with the use of various pressure regulation mechanisms. This yielded four different graphs for each muscle or muscle part for the body position in the xy angle 0 and 45°. For the body posture in the xz direction, no significant differences were identified in the electromyographic activity, and the results are therefore not presented in relation to an xz angle. An analysis of the movements and body postures during simulated fire fighting showed that all muscles of the right hand-arm-shoulder system perform static muscle exertion. This makes sense for sustained discharging of water since the fire department fire fighter does not engage in any relevant movements except for opening and closing the nozzle and swive-

269

PAGE

A4

HUMAN FACTORS EVALUATION OF THE MEASUREMENT RESULTS

E B O R SEP

LE

ling in the xy direction from 0 to 45°. When discharging spray pulses, the right hand-armshoulder system also performs no major movements; it only absorbs the forces coming from the nozzle. However, the left arm and therefore the left triceps (m. triceps brachii) is dynamically strained since the opening and closing of the nozzle takes place via very rapidly repeated movements especially when discharging spray pulses.

A4.2.1.2 DETERMINATION OF EA LIMITS For visualization of the various load limits, the figures presenting the EA measurement results Appendix A4.1.1, A4.2.2.1, Appendix A4.2.2.8 use a color coding system similar to a traffic light. Green means means that the range for the given activity is considered unproblematic; yellow means an acceptable load; values in the red range should however be avoided.

EA load limit for sustained water discharging In human factors science, one speaks of the maximum continuous exertion as a limit value for the prolonged performance of static or dynamic muscle activity. This should ensure the ability to complete an 8-hour work day without additional pauses. The maximum continuous exertion for static holding work amounts to approximately 15% of the maximum force. This range is shown in the figures in green. Under the assumption that a nozzle need never be operated without interruption for a duration of 8 hours, the limit can be raised higher than this. According to Rohmert (99), static holding work of 20% of the maximum force can be sustained for a duration of approx. 8 to 10 minutes if a sufficiently long pause is taken afterward. This assumption corresponds roughly to a typical indoor fire-fighting incident. This range is shown in yellow in the graphs below and is perceived as a reasonable load during sustained water discharging.

EA load limit for the discharging of spray pulses If the water discharging is very brief, e.g. for 1 minute, a strain of up to 50% of the maximum force is possible. In connection with discharging spray pulses, this range can be adopted as the EA limit and it is shown in the graphs in orange.

Summary evaluation of the EA load limits

SCIENTIFIC APPENDIX

In summary, the generally applicable EA load limits are assumed to be 20% for sustained water discharging and 50% for the discharging of spray pulses. Static holding work over the EA limit of 50% should not be permitted during indoor fire fighting. Such work can only be sustained for 1 minute, and exceeding this during a fire-fighting incident will put the user in danger. For dynamic work with special loads on the left triceps (m. triceps brachii), the maximum continuous exertion is placed at 50–60% of the maximum force. The EA values for this muscle are therefore shown with a green background up to 50%, yellow for 50–60% and red above 60%.

PAGE

270

A4.2.2

E B O R SEP

LE

EVALUATION OF THE RESULTS OF THE ELECTROMYOGRAPHIC INVESTIGATION OF FIRE DEPARTMENT FIRE FIGHTERS A4.2.2.1 MUSCULUS BICEPS BRACHII (RIGHT)

The biceps of the right arm is the strongest of all the muscles investigated. The discharging of spray pulses yielded significantly higher EA values than sustained water discharging across all measurements. This can be attributed to the fact that the biceps absorb the high and rapid percussive forces that arise in the discharging of spray pulses. The brief loads place the EA limit at 50% of the maximum force. At a water pressure of 1.0 MPa and 400 l/min96 in particular, very high loads were measured up to the EA limit. Sustained water discharging can be evaluated as follows from an ergonomic perspective:

Body posture xy-0° When using the pressure control valve, an EA of just over 15% was measured at a residual pressure* of 0.6 MPa at 400 l/min as well as 0.8 MPa at 235 and 400 l/min**. A pressure of 1.0 MPa at 235 and 400 l/min** produced EA values of over 20% and is not acceptable. With the reference water supply via the fire engine, the dependence on the set flow rate becomes even more pronounced. EA values of over 20% were reached with a fire-fighting water supply of 0.8 MPa at 400 l/min**. When using the CM nozzle, the strain on the muscles higher in comparison since the EA is already over the limit of 20% in this case at a pressure of 0.6 MPa and 200 l/min**.

Body posture xy-45°

SCIENTIFIC APPENDIX

The sustained discharging of water at an xy body posture of 45° resulted in higher EA values with the pressure control valve and reference measurement compared with 0°. Here as well, the baffle plate posed no ergonomic problems. Values of 0.8 MPa at 400 l/min as well as 1.0 MPa at both flow rates result in EA values over 20% for the pressure control valve as well as the reference measurement. The CM nozzle can be operated in this body posture with no difficulties even at 0.6 MPa.

96 Rated flow rate setting at the nozzle (designated with * in the rest of the document)

271

PAGE

A5

SAFETY-RELATED EVALUATION OF TECHNICAL MEASURES FOR PRESSURE REDUCTION

E B O R SEP

LE

A5.8.1.3 SYSTEM FUNCTIONAL REQUIREMENTS

SCIENTIFIC APPENDIX

– In case of testing or a fire, the desired pressure of e.g. 0.6 MPa and the maximum flow rate of e.g. 750 l/min must be made available within < 2 s of detection Section 2.2.3 at the corresponding hose station via pump speed regulation with a tolerance of +/- 0.03 MPa. – If the signaling lines are completely or partially interrupted outside of the pressure booster station installation room due to a fire, this position must be detected and the required flow rate and pressure at the fire location must be ensured. – If the signaling lines are completely or partially interrupted outside of the pressure booster station installation room due to a fire and if a triggering also takes place at a limit switch*, the required flow rate and pressure must be ensured within < 2 s Section 2.2.3 at this location. – In event of multiple triggerings at the limit switch* Section 2.2.3, the required flow rate and pressure must be ensured within < 2 s at the highest triggering site. – After shut-off of a fire-fighting water request or after a fault, the optimal operational readiness of the entire system must be restored automatically. – The signaling line must be constantly monitored for cable break, short-circuit and triggering. – A triggering of the signaling line must be forwarded to a constantly staffed station in order to initiate appropriate measures and rule out improper operation.

Figure 388: Standard triggering of speed regulation

PAGE

340

A5.8.1.4 RESULTS

E B O R SEP

LE

– In case of testing or a fire, the desired pressure of e.g. 0.6 MPa and the maximum flow rate of e.g. 750 l/min is made available within < 2 s of detection section 2.2.3 at the corresponding hose station via pump speed regulation with a tolerance of +/- 0.03 MPa. – The flow rate and pressure at the nozzle of e.g. 750 l/min at 0.6 MPa are optimally made available with a tolerance of +/– 0.03 MPa. – The fire department fire fighters are optimally able to withstand Figure 114 the forces at the nozzle. – The fire-fighting water components are suitable for the prevailing pressure.

A5.8.2

SCENARIO: COMPLETE CABLE BREAK OF THE SIGNALING LINE

A5.8.2.1 SCENARIO DESCRIPTION

Figure 389: Complete severing of the signaling line in the basement: short-circuit / cable break

341

PAGE

SCIENTIFIC APPENDIX

It is theoretically assumed that upon outbreak of the fire, the signaling lines to the fire location are severed Figure 390 to 394 leading to a short-circuit or cable break.

LE

E B O R SEP