

[image:]

	 Zuhause
	 Dokument hinzufügen
	 Anmelden
	 Ein Konto erstellen
	 PNG-Bilder

A Wait-Free NCAS Library for Parallel Applications with Timing ...

16.02.2011 - It illustrates an example of adding a node n3 to a FIFO queue by using RTNCAS. An enqueue operation implemented via locks would modify ...

 PDF Herunterladen

 PNG-Bilder

 2MB Größe
 7 Downloads
 370 Ansichten

 Kommentar

A Wait-Free NCAS Library for Parallel Applications with Timing Constraints Philippe Stellwag, Fabian Scheler, Jakob Krainz, Wolfgang Schr¨oder-Preikschat Friedrich-Alexander University Erlangen-Nuremberg Computer Science 4 Martensstr. 1, Erlangen, Germany {stellwag,scheler,krainz,wosch}@cs.fau.de

Abstract

chronological order

We introduce our major ideas of a wait-free, linearizable, and disjoint-access parallel NCAS library, called RT NCAS. It focuses the construction of wait-free data structure operations (DSO) in real-time circumstances. RT NCAS is able to conditionally swap multiple independent words (NCAS) in an atomic manner. It allows us, furthermore, to implement arbitrary DSO by means of their sequential specification.

operation queue:

RT NCAS guarantees that DSO built on top of it are linearizable [2] and offer the following properties: 1. Lock freedom offers interrupt transparency, and neither depends on system libraries nor induces restrictions to the scheduler (we do not consider backoff algorithms here). Under concurrent usage they also frequently yield better performance than blocking counterparts. As no local progress guarantees can be given for such operations, it is usually not possible to determine an upper bound for the worst-case execution time (WCET) of such DSO. We use lock-free DSO in RT NCAS to gain a stronger progress guarantee later on. 2. Wait freedom [1] is similar to lock freedom, but additionally guarantees a definable and bounded WCET. Hereby, the temporal progress requirements of real-time applications can be satisfied. Note that correctness in realtime systems is both, functional correctness as well as timeliness. 3. Disjoint-access parallelism [3] enables parallel executions of

Copyright is held by the author/owner(s). PPoPP ’11, February 12–16, 2011, San Antonio, Texas, USA. ACM 978-1-4503-0119-0/11/02.

gen. by λ

ptr to NCAS struct unique ticket

head

callback λ

tail

n1

ptr

old

new

tail n2->next len

0x02 0x0 2

0x03 0x03 3

n2

n3

user-defined FIFO queue

len NCAS structure

Introduction

Our Contribution

f path of action

General Terms Algorithms, Design

Sequential DSO usually rely on exclusive access to the parts of the data structure (DS). Their methods are typically implemented using reads and writes to single words spread out over the whole critical region to manipulate the state of a DS. This induces convoy effects and other timing drawbacks. Also prior universal constructions, such as Herlihy’s work [1], serialize all DSO; this induces priority inversion in real-time circumstances.

f

opqueue structure

Categories and Subject Descriptors D.1.3 [Programming Techniques]: Concurrent Programming

1.

f

r tail

critical region of an enqueue op

r tail->next

NCAS status

r len

NCAS word

gen. := generation f := free opqueue entry

operations accessing disjointed memory locations. This yields additional benefits in terms of parallel performance and minimal priority inversions. Starting with a sequential implementation of a DSO, we apply several transformations to it. Each transformation ensures the next stronger progress property (from 1. to 3.) and finally, a wait-free and disjoint-access-parallel DSO is reached. Our work was inspired by Ramamurthy [4, pp. 138 ff.]. His NCAS, however, only focuses priority-based real-time systems on uni-processors. To the best of our knowledge, RT NCAS is the first generic approach to build interrupt-transparent DSO even in parallel real-time systems, and also considers disjoint-access parallelism. It is, furthermore, not restricted to priority-based real-time systems.

2.

Design of RT NCAS

The construction of an NCAS library that satisfies the above stated properties is a rather complex task. Thereby many serious problems arise on the implementation level that we cannot discuss completely within these two pages. Thus, we only adumbrate the design of RT NCAS, and point to some interesting problems and results. The figure shows the major idea and all data structures involved in RT NCAS. It illustrates an example of adding a node n3 to a FIFO queue by using RT NCAS. An enqueue operation implemented via locks would modify tail, tail->next, len inside a critical region to ensure atomicity. To add n3 to the queue using RT NCAS, all words of the data structure are encapsulated into NCAS words. The thread performing the enqueue operation has to create an

opqueue structure containing a unique ticket to be able to deduce a chronological order and a user-defined callback λ to create an NCAS structure describing the atomic state transformation to enqueue n3. This opqueue structure is enqueued to the operation queue providing a wait-free helping scheme, where concurrent threads help each other to perform those stalled operations. 2.1 Lock-Free Operations In a first step the formerly sequential DSO has to be transformed into a lock-free operation. This is accomplished by reading the old state of the DS via a read method, computing a new state, and, finally, atomically exchanging the old state with the new one by an NCAS operation. In case of concurrent interference the NCAS operation may fail and the complete operation including reading the old state and computing the new state has to be repeated. The usage of the NCAS operation as described above is both lock-free and linearizable. We have implemented a NCAS method to support lock-free DSO and a read method to retrieve the actual value from the DS. Both are weakly wait-free, i.e. they respond within finite time, but may fail due to concurrent interferences and then have to be repeated. 2.2 Wait-Free Operations The usage of the NCAS operation within such a retry-loop prevents the estimation of a WCET in the presence of contention. This is due to the unknown number of retries needed to successfully complete the DSO; under hard real-time conditions this is unacceptable. To overcome this, we transform the lock-free DSO into a wait-free one by means of a helping scheme implemented via an operation queue. This helping scheme facilitates the implementation of waitfree DSO. Thereby, wait freedom allows to determine the WCET that is essential in real-time circumstances. The operation queue is implemented by a wait-free FIFO and works as follows: Every thread encapsulates its DSO into a so-called opqueue structure. This structure contains a pointer to a callback λ, a pointer to the NCAS structure (which contains the addresses of the words to be changed, and the corresponding old/new values) generated by the callback λ, and a unique ticket to establish a chronological order among all elements within the operation queue. λ is a user-defined callback that uses the sequential DSO to build the NCAS structure with old and new values. After inserting its own DSO to the operation queue, each thread performs the following steps until its own DSO is completed: Get the oldest opqueue structure from the operation queue and try to perform the encapsulated operation. The latter is done as follows: 1. The opqueue structure is checked for an active NCAS structure, i.e. a structure whose associated NCAS operation might still be executed. If one is found, the second step is skipped. 2. λ is used to create a new NCAS structure. A thread then tries to atomically replace the reference to the NCAS structure in the opqueue structure with a reference to the newly created one by means of a CAS instruction. 3. The NCAS structure is then executed in a cooperative manner. Thereby all threads always working on the same active NCAS structure (consensus object). Finally, in case of a successful execution, the opqueue structure is dequeued. The operation queue, however, requires (1) a wait-free FIFO that allows us to find and use the oldest entry, and (2) the NCAS implementation has to support cooperation: If all active threads work on the same NCAS operation (using the same NCAS structure), the described NCAS operation must be completed successfully. 2.3 Disjoint-Access-Parallel Operations The helping scheme implemented by the operation queue has one disadvantage: All DSO are performed sequentially as be known from previous approaches that may results in convoy effects, and may

cause poor performance. To avoid this, we introduce the concept of speculative execution. Before inserting an opqueue structure into the operation queue, each thread tries to execute the DSO speculatively by the corresponding lock-free operation. If the speculative execution fails, an opqueue structure will be enqueued into the operation queue and the thread carries on as described in the previous section. If the speculative execution is successful, the thread still works on the oldest entry of the operation queue. This is required to guarantee progress for the oldest entry in the operation queue. Otherwise, the oldest entry might starve due to continuously interfering speculative executions. By forcing every thread to execute at least one opqueue structure from the operation queue, it can be guaranteed that the oldest entry in the operation queue is completed in finite time. Using speculative execution, finally, we support the implementation of wait-free and disjoint-access-parallel DSO based on top of the wait-free operations provided by the helping scheme introduced in Sec. 2.2. Furthermore, the degree of disjoint-parallel accesses can be chosen with respect to the number of speculative executions that can take place concurrently.

3.

Preliminary Results

We have implemented several DSO, such as push/pop on a stack or enqueue/dequeue on a queue, by means of spinlocks as well as RT NCAS. Numerous benchmarks that perform DSO (a) with increasing concurrency, and (b) with an increasing number of words to be touched simultaneously show very encouraging results: On the one hand and without speculative executions, RT NCAS operations show at average four times less jitter than operations with spinlocks. Moreover, RT NCAS-based operations show about ten times higher average times; however, the throughput of RT NCASbased operations per time unit are slightly higher compared to the spinlock case. This is due to our helping scheme and is the crucial factor for our significant low execution jitter. On the other hand, these advantages go along with comparable maximal response times of operations built on top of RT NCAS. Furthermore, with an increasing number of speculative executions, we are able to trade a higher degree of disjoint-access parallelism to a higher jitter. This allows us to achieve a higher averagecase performance for appropriate (e.g., soft real-time) use cases.

4.

Conclusion and Further Work

We have sketched the design of RT NCAS, a library offering linearizable, lock-free, wait-free and disjoint-access-parallel interfaces for reading and conditionally swapping multiple words in an atomic manner. Developers of shared data structures now have an easy way to achieve full interrupt-transparency with a strong progress guarantee. With RT NCAS, developers can, furthermore, use their sequential algorithms on top of it without modifications. Currently, we are still working on several optimizations to reduce the WCET of RT NCAS-based DSO. Moreover, we are also close to complete a formal proof of correctness for RT NCAS and its components.

References [1] M. P. Herlihy. Wait-free synchronization. in ACM Transactions on Programming Languages and Systems, 11(1):124–149, January 1991. [2] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. in ACM Transactions on Programming Languages and Systems, 12(3):463–492, 1990. [3] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong shared memory primitives. in Proc. of the Symp. on Principles of Distributed Computing, pages 151–160, 1994. [4] S. Ramamurthy. A lock-free approach to object sharing in real-time systems. PhD thesis, Univ. of North Carolina at Chapel Hill, 1997.

A Wait-Free NCAS Library for Parallel Applications with Timing Constraints Philippe Stellwag, Fabian Scheler, Jakob Krainz, and Wolfgang Schro¨der-Preikschat Architecture

Introduction

Implicit Transaction Explicit Transaction per Cooperation per Mutual Exclusion --Begin CS-read WORD{1-3} read WORD{1-3} NEW{1-3} = calc(WORD{1-3}) NEW{1-3} = calc(WORD{1-3}) mk ncas(NEW{1-3},WORD{1-3}) write NEW{1-3},WORD{1-3} --End CS--

goals:

techniques:

data structure >

sequential operation NCAS method

>

progress properties

• Problem. Sequential code is the root of many problems in parallel real-time systems, e.g., priority inversion/violation, convoy effects, jitter, or scalability issues. Not only mutual exclusion, but also previous work on wait-free universal constructions, induces "sequential code". These interrupt-transparent mechanisms are based on auxiliary schemes and perform operations usually cooperatively, one after another. • rtNCAS. Our approach allows building linearizable wait-free operations. Developers are, furthermore, able to re-use their sequential algorithms in multi-core environments without further care about concurrency. In addition, rtNCAS is able to speculatively execute operations that reduces sequential code.

RT NCAS

read method lock-free operation operation queue

>

wait-free operation speculative execution

>

wait-free and disjoint-accessparallel operation

stronger

Implementation

NCAS method read method • gets an NCAS struct as input • constant-time wait-free value function on NCAS words generated through callback λ • tries to swap the NCAS words: • returns the value of the word that has been valid for some 1. insert refs. to NCAS struct moment during the invocation (consensus obj.) into words of the read method 2. change values of all words • may fail to reliably read the simultaneously value, if the NCAS struct has 3. replace refs. of the NCAS words with their actual values been deallocated

operation queue • wait-free FIFO on the basis of an array of size N (number of threads) • uses tickets to build a chronological relation • uses fetch-and-add instructions to create unique tickets • avoids ticket cycles, if number of threads next len

0x02 0x0 2

0x03 0x03 3

user-defined FIFO queue

len

2

3

2 4

5

6

7

2 4

5

30 8

6

25 9

Number of threads

7

20 10 11 12

15

8

4

5

6

25 9

5

7

20 10 11 12

15

30 8

25 9

Number of threads

10 5

Number of NCAS words

critical region of an enqueue op r tail

3

30

Number of threads

10

20 10 11 12

15 10 5

Number of NCAS words

Number of NCAS words

(2) rtNCAS benchmark with five speculative executions:

r tail->next 2500

NCAS status

3

r len

2500

450 400 350 300 250 200 150 100 50 0

500

2000

NCAS word

600

2000 400 1500 1500

300

1000

200

1000 500

100 500

0

0 0

f := free opqueue entry gen. := generation

2

3

2 4

5

6

7

30 8

Number of threads

25 9

20 10 11 12

15 10 5 Number of NCAS words

3

1.1

1

1

0.8

0.9

0.6

0.8

0.4

0.7

0.2

0.6

0

0.5

2 4

5

6

7

30 8

Number of threads

25 9

20 10 11 12

15 10 5 Number of NCAS words

3

4

5

6

7

30 8

Number of threads

25 9

20 10 11 12

15 10 5 Number of NCAS words

Chair in Distributed Systems and Operating Systems

Empfehlen Sie Dokumente

[image: alt]

electromagnetics for engineers with applications to

Ebook PDF electromagnetics for engineers with applications to digital systems and electromagnetic interference Download

[image: alt]

A Massively Parallel Architecture for Bioinformatics

2 Christian-Albrechts UniversitÃ¤t, Department of Computer Science, ... Standard CPUs are designed for providing a good instruction mix for almost all commonly ...

[image: alt]

Canakinumab for the Treatment of Children With ... - Wiley Online Library

patients with colchicine-resistant FMF, including in one controlled study (2,3). In the present study we assessed the ef

[image: alt]

Web Applications for Management

Creas tu Portal desde www.ready2fill.com. Recibes tu número de portal, usuario y contraseña en tu ... Oaxaca +(52) 95 15

[image: alt]

physics principles with applications books a la carte plus

We have many PDF Ebook and user guide is also associated with physics principles with applications books a la carte plus masteringphysics PDF Ebook, include : Pierre Charron Als P Dagoge Unter. Besonderer Uber Cksichtigung Seines Verh Ltnisses Zu Mic

[image: alt]

Energy Timing

Energy Timing flexibel auf die Preisent wicklungen am Strommarkt zu rea gieren. Anhand Ihres individuellen Lastprofils helfen wir Ihnen, die optimale Anzahl.

[image: alt]

Parallel Computation for Developing Nonlinear Control

The solutions are utilized for detection of ... Photoluminescent CdS/dendrimer nanocomposites for fingerprint detection free essay. Abstract The structure of quantum field theory renormalization in curved space-time is investigated. The equations all

[image: alt]

Load Balancing for Massively Parallel ... - Semantic Scholar

superposition of partial solutions f l on coarse and ... retrieves a sparse grid approximation f(c) of f. See Figure 1 for a 205â€“222, Springer, 2013. [8] C. Kowitz ...

[image: alt]

Parallel Application Signature for Performance ... - Semantic Scholar

In production clusters, where throughput and efficiency of use are fundamental, it is important to be able to predict wh

[image: alt]

parallel parallel

Informations et bureaux des guides Ã la page 22. PrÃªt Ã laisser vos traces ? Aficionados of the great outdoors, enjoy the wonderful ski excursions in our area. So.

[image: alt]

Explorer Awards - Request for Applications (RFA)

29 mar. 2016 - cost via a collaboration between SFARI and The Jackson Laboratory. Access to the Simons Simplex · Collect

[image: alt]

Medical applications for ultrafast laser pulses - CiteSeerX

At the cavities wall, still the opend bone channels can be seen (Fig. 10). 5. Extraluminal Laser Angioplasty (ELAN). The main cause of cardiovascular disease is ...

[image: alt]

dependable computing for critical applications 3 pdf

dependable computing for critical applications 3 | Get Read & Download Ebook dependable computing for critical applications 3 as. PDF for free at The Biggest ...

[image: alt]

Technical Limitations for Designing Applications ... - Semantic Scholar

If a user has reached the request limit for an app, the call fails. lishing option for staggered posts with a queue limit of up to 50 posts per day (Tumblr,. 2014).

[image: alt]

Application for a Blue Island Public Library Card

City/Cuidad State Zip Code. Birth Date/Fecha de nacimiento. Telephone/Teléfono: ... School/Escuela. Grade/Grado. Age/Eda

[image: alt]

Call for Applications for Countries and Regions

PQ is organized and funded by the Ministry of Culture of the In the last decade, the Prague Quadrennial has

[image: alt]

information for preschool program for children with

hace 5 días - El Distrito Escolar Independiente de McDade llevará a cabo un proceso de detección para los niños que teng

[image: alt]

Massive parallel in-memory database with GPU based query co ...

systems, but which do not yet fit well into the architecture of current database engines and therefore require a major effort in re-engineering the entire core.

[image: alt]

Call for Applications for Countries and Regions

different angles and fighting the routine that can be the cancer The five best film creative teams will be Wor

[image: alt]

Das perfekte Timing - Sparkassenverlag

von Bauschutt im gesamten Ruhr- gebiet umfasst, suchte Tepel ein. Konzept zur ForderungsÃŸnanzie- rung, um im Wachstum des Unter- nehmens die LiquiditÃ¤t ...

[image: alt]

Das perfekte Timing - Sparkassenverlag

direkt auf ein Konto der S-Facto- ring. ... Kosten dieser Branche bedeuten ... der Deutschen Factoring Bank, ... Tepel bis jetzt keine Zahlungsaus- ... bezahlt hat.

[image: alt]

NOTICE OF DEADLINE TO FILE APPLICATIONS FOR

17 dic. 2018 - La boleta de elección se puede presenter durante el siguiente horario:) Filing Dates and Times: (Fechas y

[image: alt]

NOTICE OF DEADLINE TO FILE APPliCATIONS FOR

~SpeCiallPrimary) Election ballot may be filed during the tollowing time: (Circle one). (Se da aviso ... Filing Dates an

[image: alt]

a collectjon - UN Digital Library

16 oct. 1979 - Afganistán, Argentina, Bangladesh, Brasil, China, Ecuador, Espana,. Etiopía, India, Japón, Rumania y Suec

Copyright © 2024 P.PDFDOKUMENT.COM. Alle Rechte vorbehalten.

Über uns |
Datenschutz-Bestimmungen |
Geschäftsbedingungen |
Hilfe |
Copyright |
Kontaktiere uns

×
Anmelden

Email

Password

 Erinnere dich an mich

Passwort vergessen?

Anmelden

