Energiewirtschaft und Energiepolitik Energy ...

Theorie und Politik, Oldenbourg, München ... Auflage, München: Oldenbourg. ...... BM W. Nissan. Renault. PSA. Nuvera. Delphi. Volvo. VW. Mitsubishi. EvoBus.
4MB Größe 18 Downloads 323 Ansichten
1

D-MTEC Department of Management, Technology, and Economics ETH Zürich

Skript zur Vorlesung Nummer 351-0510-00

Energiewirtschaft und Energiepolitik Energy Economics and Policy SS 2006

Prof. Dr.-Ing. Eberhard Jochem Lehrstuhl für Nationalökonomie und Energiewirtschaft

2

Inhaltsverzeichnis Datum

Seite

Übersicht zur Vorlesung

3

Empfohlene Bücher, Statistiken und Publikationen

8

I) Energieressourcen, Nachhaltigkeit und Energiestatistik •

Energie als natürliche Ressource und ihre Rolle in Wirtschaft und Gesellschaft



Energiestatistik und Energiewirtschaft

6.4.

12

13.4.

II) Bestimmungsfaktoren der Energienachfrage •

Energienbedarfskette und Energieeffizienz

20.4.



Übung 1

27.4.



Die Kosten der Produktion und der Verteilung von Energie (Elektrizität)

34

4.5.



Materialeffizienz und Energiebedarf sowie Energiepreise

11.5.



Externe Kosten und ihre Internalisierung

18.5.

III) Energiewirtschaftliche Analysen und Projektionen •

Szenario-Technik, Modellbildung und Energiemodelle



Entwicklung des Primärenergiebedarfs / Energiebedarfsschätzungen und Grenzen der Projektionsmethoden

1.6.

76

8.6.

IV) Hemmnisse und Marktunvollkommenheiten sowie Energie- und Klimapolitik •

Hemmnisse der Energieeffizienz und -substitution



Marktunvollkommenheiten und energiepolitische Instrumente I 22.6.



Energie- und klimapolitische Instrumente II und deren Evaluation

15.6.

97

24.6.

V) Anhang •

Glossar

119

Zusätzlich sind Informationen zur Vorlesung und zu den Übungen zu finden unter http://www.cepe.ethz.ch/education/EnergyEconomicsCepe

3 CEPE / D-MTEC ETH Zentrum ZUE E 8 CH-8092 Zürich Tel. +41-44632 06 50 Fax +41-44-632 10 50 http://www.cepe.ethz.ch

Energiewirtschaft und Energiepolitik (SS 2006) Prof. Dr.-Ing. Eberhard Jochem Vorlesung: Donnerstag, 15-17 Uhr, ML H44 Beginn: 6. April 2006, 15 Uhr, ML H44

Objectives: The students are introduced to basic knowledge of energy economics, energy markets, energy efficiency potentials, obstacles and market imperfections and related energy policies. The energy policy section covers general and specific policy instruments and also includes climate change policy, related instruments and their implementation. Finally, the students are introduced to modelling energy systems, energy economics and policies using top-down and bottom-up models and the advantages and limitations of these approaches in practice.

Übersicht zur Vorlesung: Energiewirtschaft und Energiepolitik – Energy Economics and Policy Vorle sung

Tag

Thema

Dozent

Bibliographie

Einführung und Energieressourcen und Energiestatistik 1

6.4

Energie als natürliche Ressource

Jochem

• Ökonomie der natürlichen Ressourcen • Reserven & Ressourcen der Energie • Die Sonne als wichtigste Quelle

IEA, 2005 Spreng, 1995, Kap. 1 Keating, 1993 VDI-Gesellschaft für Energietechnik, 2000

Energie und Nachhaltigkeit • Brundlandt-Kommission; Agenda 21 • Inflation des Begriffs Nachhaltigkeit

2

13.4.

Die Rolle der Energie in Wirtschaft und Gesellschaft • Entwicklungs- und Industrieländer

Jochem

www.worldenergy.org >Energy Data Centre www.iea.org/stat.htm

4

• Energieintensitäten • Klimawandel und Umweltbelastung

>Key world energy statistics (pdf-file) www.admin.ch/bfe/ > Energiewirt. u. Statistik (Gesamtu. Elektrizitätsstatistik)

Energiestatistik (beschreibend) • Definitionen, Einheiten, Umwandlungsfaktoren • Energiebilanzen (speziell Schweiz) • kumulativer Energiebedarf • Datenquellen

Bestimmungsfaktoren der Energienachfrage 3

20.4.

Energiebedarfskette und –effizienz • Energiedienstleistungen /Nutz-

Aebischer

Hensing, Pfaffenberger, Ströbele 1998, Samuelson, Nordhaus 1998, Goldemberg, J. 2000; Kap. 6; Romm, J.J. 1999: Cool Companies Geiger, B. u.a., 1999 Jochem et al. 2003

Jochem

Diekmann, J. u.a. 1999,

Jochem

Hensing, Pfaffenberger, Ströbele 1998, Kap. 11 Hirschberg, Jakob 1999

Jochem

Baron, R., Jochem, E. Kristof, K. 2005

und Endenergiebedarf am Beispiel der Raumwärme, Dienstleistungssektoren und Industrie (als Stand der Technik)

• Energieeffizienzpotentiale

theoretisch, technisch, wohlfahrtstheoretisch, makroökonomisch, erwartete

4

27.4.

• Die 2000 Watt Gesellschaft Energiebedarfsbestimmende Faktoren (Perspektivarbeiten des BFE) • für private Haushalte • für Dienstleistungen und Industrie • für den Verkehrssektor • für den Umwandlungssektor • Strukturwandel

5

4.5.

Kosten der Produktion und der Verteilung von Energie (Elektrizität) • Technologien im Kostenwettbewerb • Kostendegressionen durch Lernen und Skaleneffekte • Der optimale Einsatz der Energieumwandlungstechniken

6

11.5

Materialeffizienz und Energiebedarf • effizienter und Materialsubstitution • Recycling, Re-Use und Pooling

Energiepreise • fob und Importpreise

5

• Umwandlungs- und Transportkosten • Steuern, Abgaben, Emissionszertifikate

7

18.5.

Externe Kosten und Internalisierung

Jochem

• Externalitäten (Umwelt, Ressourcen) • Bewertungsmethoden • Externe Kosten in der Energiewandlung und -nutzung

Stiglitz, J. 2000, Kap. 8 Pindyck, Rubinfeld 1998, Kap. 18 Pearce und Turner 1990, Kap. 4-6

Energiewirtschaftliche Analysen und Projektionen 8

1.6.

Szenariotechnik und Modellbildung

Jochem

Jochem/Jakob, 2003 Hensing, Pfaffenberger, Ströbele 1998, Kap.11 Heinloth, K. 1998, Kap. Markewitz, R. u.a.1998 Goldemberg, J. 2000, Kap.6 Jochem,Kuntze, Patel 2000

Jochem

Hensing, Pfaffenberger, Ströbele 1998, Kap. 11 Heinloth, K. 1997, Kap. 1 und 14 Bartzsch, W.H. 1997

• Methodik der Szenariobildung • Beispiele aus den Energieperspektiven

Energiemodelle • makroökonomische Energiemodelle • prozess-orientierte Energiemodelle • Brückenbildung zwischen TD und BU

9

8.6.

Energiebedarfsschätzungen und Grenzen der Projektionsmethoden • Makromodelle (technischer Fortschritt, geschlossene Wirkungsketten) • Simulation und Optimierung von BU-Modellen (TF und Partialanalysen) • Kombination der Vor- und Nachteile durch Integration (soft und hard links)

Hemmnisse und Marktunvollkommenheiten sowie Energie- und Klimapolitik 10

15.6.

Hemmnisse der Energieeffizienz und -substitution

Jochem, 2004; Geiger u.a. 1999, Kap.3 Ostertag u.a. 2000 Jochem, Kuntze, Patel 2000

• betriebsinterne Mängel und Probleme • Präferenzen, Prestige, Psychologica • gesetzliche und sonstige Rahmenbedingungen

11

22.6.

Marktunvollkommenheiten • Marktmacht, Medien- und Wählerrolle

Jochem

Ostertag u.a. 2000 Jochem, Kuntze, Patel 2000

6

• externe Kosten der technischen Optionen • internationale Aspekte (Wettbewerb)

Ziesing u.a. 1997 Hensing, Pfaffenberger, Ströbele 1998, Kap. 13 – 15

Energiepolitische Instrumente I • generelle Instrumente • internationale Abstimmung (EU, Kyoto)

12

29.6.

Energiepolitische Instrumente II

Jochem

• sektor- und technologiespezifische Massnahmen • Massnahmenbündel als Reaktion auf mehrere Hemmnisse • internationaler Handel,

Evaluation von Energie- und Klimapolitik • direkte und indirekte Effekte • Innovationspolitiken • langfristige Effekte (Diskontierung?)

Prüfung

6.7.

Semesterendprüfung unten)

(siehe

Jochem, Ott

Ziesing u.a. 1997 Hensing, Pfaffenberger, Ströbele 1998, Kap. 13 – 15

7

Wichtige Mitteilungen zu Testaten und Prüfungen Testate

Testatbedingungen: • Für Studierende (z.B. von D-MTEC), welche ein Testat von 3 Stunden erlangen wollen: Aktive Teilnahme an der Vorlesung, Lösung von drei Übungen und zusätzlich eine Ausarbeitung zu einem selbst gewählten Thema • Für Studierende, welche ein Testat von 2 h erlangen wollen: Aktive Teilnahme an der Vorlesung und Lösung von drei Übungen

Prüfungen

Für diejenigen Studenten, welche eine Semesterendprüfung ablegen wollen: Die schriftliche, 90-minütige Prüfung findet statt am 6. Juli 2006 von 15.15-16.45 (letzte Vorlesungsstunde). Anmeldung per Email bis einen Tag vor Prüfungstermin bei: [email protected], 044 632 05 76.

Übungen Die Veranstaltung setzt sich aus einer Vorlesung (2h/Woche) und drei Übungen zusammen. Die Übungen werden erläutert in den zweiten Stunden mancher Vorlesungen. Die Lösungen zu den Übungen werden Mitte Juni auf der Homepage des CEPE (www.cepe.ethz.ch) verfügbar gemacht. Spezielle Übungsstunden werden nicht abgehalten. Zuständige AssistentInnen

Sprechstunde nach Vereinbarung: Andrea Ott Tel.-Nr.: 044 632 05 76 (Vorlesung und Übungen Prof. Jochem) [email protected] Marcel Wickart Tel.-Nr.: 044 632 03 98 (Ökonomische Aspekte der Vorlesung) [email protected] Bernard Aebischer Tel.-Nr.: 044 632 41 95 (technische und Policy-Aspekte) [email protected]

8

Empfohlene Bücher, Statistiken und Publikationen Empfohlene Lehrbücher Banks F.E. (2000), Energy Economics: A Modern Introduction, Kluwer Academic Publishers, Dordrecht Hensing I., W. Pfaffenberger und W. Ströbele (1998), Energiewirtschaft – Einführung in Theorie und Politik, Oldenbourg, München Griffin J.M. und H.B. Steele (1986), Energy Economics and Policy, Academic Press, Orlando

Wichtige Energiestatistiken Bundesamt für Energie, (verschiedene Jahrgänge). Schweizerische Gesamtenergiestatistik 2004. Bern 2005 Bundesamt für Energie, (verschiedene Jahrgänge). Schweizerische Elektrizitätsstatistik, 2004. Bern 2005 IEA/OECD, (verschiedene Jahrgänge) Energy balances for OECD-countries. Paris 2001 Bibliografie zur Vorlesung Baron, R., Jochem, E. Kristof, K. (2005): Studie zur Konzeption eines Programms für die Steigerung der Materialeffizienz in mittelständischen Unternehmen. Arthur D. Little, FhInst. f. Systemund Innovationsforschung, Wuppertal-Institut, Wiesbaden/Karlsruhe/Wuppertal Bartzsch, W.H. (1997), Betriebswirtschaftslehre für Ingenieure. Bonomo, S., M. Filippini und P. Zweifel (1998), “Neue Aufschlüsse über die Elektrizitätsnachfrage der schweizerischen Haushalte”, Schweiz. Zeitschrift für Volkswirtschaft und Statistik, Vol.134 (3), S. 415-436. Cuhls, K., Blind, K., Grupp., H. (1998), Delphi '98 Umfrage. Studie zur globalen Entwicklung von Wissenschaft und Technik. Methoden- und Datenband. Fh-ISI im Auftrag des BMBF, Karlsruhe, Februar 1998 Diekmann, J. u.a. (1999), Energie-Effizienz-Indikatoren. Umwelt und Ökonomie 32 Physika Heidelberg Filippini, M. (1997), Elements of the Swiss Market for Electricity. Physica-Verlag, Berlin. Geiger. B., E. Gruber, W. Megele (1999), Energieverbrauch und Einsparung in Gewerbe, Handel und Dienstleistung. Physika Heidelberg Goldemberg, Jose (2000), World Energy Assessment. UNDP New York , Kap. 6 End-use efficiency Heinloth, Klaus, (1997), Die Energiefrage – Bedarf und Potentiale, Nutzung, Risiken und Kosten. Vieweg, Braunschweig. Hirschberg, S. und M. Jakob (1999), Cost Structure of the Swiss Electricity Generation under Consideration of External Costs, SAEE Seminar Strompreise zwischen Markt und Kosten: Führt der freie Strommarkt zur Kostenwahrheit?, Bern. Hunt, S. und G. Shuttleworth (1996), Competition and Choice in Electricity, Wiley, Chichester Jochem, E., U. Kuntze, M. Patel (2000), Economic Effects of Climate Change Policy - Understanding and Emphasizing the Costs and Benefits. ISI Karlsruhe Jochem, E., Jakob, M. (2003), Energieperspektiven und CO2-Reduktionspotenziale in der Schweiz bis 2010, vdf-Verlag, ISBN 3-7281-2916-X.

9

Jochem, E. (edr) (2004), Steps towards a sustainable development - A White Book for R&D of energy-efficient technologies, ISBN 3-9522705-0-4. Keating, M. (1995), Agenda for Change, Centre for Our Common Future, Geneva (ex. auch auf Deutsch) Knieps, G. (1995), Neuere Entwicklungen in der Regulierungsdiskussion, WiSt, 24 (12) Markewitz, P. u.a. (1998), Modelle für die Analyse energiebedingter KlimagasreduktionsStrategien. Reihe Umwelt, Forschungszentrum Jülich OECD/IEA (2005), Resources to Reserves – Oil & Gas Technologies for the Energy Markets of the Future, International Energy Agency (IEA), Paris. Ostertag, K. u. a. (2000), Energiesparen – Klimaschutz der sich rechnet. .Ökonomische Argumente in der Klimapolitik. Physika, Heidelberg. Pearce, D.W. und R.K. Turner (1990), Economics of natural resources and the environment, Harvester Wheatsheaf, New York, Kapitel 4-6 Pindyck, S.R. und D.L. Rubinfeld (1998), Mikroökonomie, 4. Auflage, München: Oldenbourg. Romm, J. J. (1999), Cool companies How the Best Businesses Boost Profits and Productivity by Cutting Greenhouse Gas Emissions. Earthscan, London. Samuelson, P.A. und W.D. Nordhaus (1998), Volkswirtschaftslehre, Ueberreuter, Anhang 5 und 7. Spreng D. (1995), Graue Energie, vdf-Hochschulverlag an der ETH Zürich Spreng D. und J. Schwarz (1993), Energie – ihre Bedeutung für die Wirtschaft, Bundesamt für Konjunkturfragen, EDMZ Bern, Bestellnummer: 724.316 d Stiglitz, J.E. (2000), Economics of the Public Sector, W.W.Norton, New York Rahmeyer, F. (1999), Preisbildung im natürlichen Monopol, WiST Heft 2, Februar 1999, S.6975. VDI-Gesellschaft für Energietechnik (2000), Energie und nachhaltige Entwicklung, VDI/GET Düsseldorf Viscusi, W. K., J. M. Vernon und J. Harrington (1995), Economics of regulations and antitrust, second edition, MIT Press, Kapitel 11. Ziesing, H.-J. u.a. (1997), Szenarien und Massnahmen zur Minderung von CO2 -Emissionen in Deutschland.in: Politikszenarien für den Klimaschutz. Band 1 (Stein und Strobel Hrsg.) Reihe Umwelt Forschungszentrum Jülich

10

Overview I: The core competence of the students participating in this course is in the fields of natural sciences, engineering, or architecture. The objective of the course is to develop "coupling competence" of neighbouring disciplines, methods and data, relvant for energy economics and energy policy analysis (see Figure 0-1).

Übersicht zur Vorlesung Energiewirtschaft und Energiepolitik Energiestatistik

Energieressourcen - Reserven - Ressourcen Rationelle Energieanwendung - Effizienzpotentiale - Energiedienstleistungen

- beschreibende - analytische - Datenquellen Energietechnik Wärmetechnik Elektrotechnik

- Szenariotechnik - Modellierung

- Maßnahmen und Bündel - EU und international Hemmnisse und Marktunvollkommenheiten - allgemeine Defizite - sektorale Hemmnisse

Bautechnik Energienachfrage

Energieperspektiven

Energiepolitik

- mikroökonomische Analysen I und II

Unternehmen und Märkte - Produktionskosten und Preise - Externe Kosten - Deregulierung der Märkte 2

Figure 0-1: Overview over the course on "Energy Economics and Policy" – developing coupling competence to other disciplines, methods and statistics

11

Overview II There are different levels of economics and the same expression may not mean the same at those different levels. This fact leads to many misunderstandings in discussions and reading (e.g. cost or benefit). The course distinguishes four levels of economics, which is important to keep in mind (see Figure 0-2): • the level of business economics and project evalutation • the sectoral (micro) economic level such as the energy supply sector • the macro economic level • the welfare economics level (including external costs and benefits not included in

market prices of products and services) The course covers these four levels and refers to the different types of quantitative models. The input/output model is a yery convenient and powerful model type building a bridge between the process-oriented bottom up models and the macro economic models; the latter also can handle externalities in principle (see Figure 0-2).

Level of economics :

Types of models:

« micro-micro » : Technology and site level Micro : Sector level

business economics (project evaluation) energy system assessment (supply and demand, technology)

bottom-up, technologyoriented

I/O-models

Macro : National/regional level

ƒ

economics (economy-wide and macro effects) external effects (external costs and benefits)

top-down, sectororiented

Key issues : technological change, shifts in energy supply, energy-economy interactions, energyenvironment interactions and energy-society interactions 3

Figure 0-2: Overview of different levels of economic analysis

12

I. Resources of energy, sustainable development, and energy statistics Energy as a natural resource and its role in the economy and society Objectives: The understanding of natural resources and the state of the art of statistics are the objectives of this section of the course. The student should be able to distinguish different types of reserves and resources and understand the reserve to production ratio, stationary and dynamic, the theory of natural economics (back stop technology, Hotelling rule) and the national energy statistics (energy flow diagram), the cumulative energy demand and some understanding of the role of energy in industrialised countries. Finally, the basic principle of sustainable development (in its hard and soft interpretation) should be known.

I.1.

Reserves and resources of non-renewable resources

If sustainability demands that “present generations should use non-renewable resources without compromising the capacity of future generation to satisfy their own needs”, two questions arise regarding fossil fuels: • What are the theoretically maximum quantities of fossil fuels mankind could use in

the future? How long will they last, giving constant or even increasing use in the future decades? • What are the alternatives of fossil fuels? Can they be developed early enough and

at similar cost and prices as the cost level of fossil fuel is today? The experience of the two oil price crises in 1973 and 1979/80 showed that fossil fuel resources are not abundant, but need constant exploration efforts and improvement of the production technologies, but also alternative energy sources in the longer term. The so called oil crisis of 1973 already has changed the structure of primary energy use of the world: whereas in 1973, oil use accounted for 45 % of total primary energy use, 27 years later the share of oil has dropped to 34.9 % (see Figure I.1-1). Natural gas and nuclear energy grew during this period by five percentage points or six respectively. The share of coal remained rather unchanged at around 24 %, which means that coal use increased during this period and quite substantially contributed to the increasing CO2 emissions and atmospheric CO2 concentration. The ratio of proven reserves to yearly consumption of a non-renewable energy (stationary duration of reserves, statische Reicheweite) which is for oil about 40 years or for natural gas about 60 years is often misunderstood as a period when production of this non-renewable energy would stop. This perception however does not at all reflect the technical or even theoretical availability of non-renewable resources. The stationary duration of proven reserves SD is the relation of economically producible quantity of known reserves Qknown and the yearly production of this resource P: SD = Qknown / P ;

13

Figure I.1-1

Share of primary energy use, world, 1973 and 2000

It does not include known, but not economically producible reserves and, more importantly, does not include new reserves (at present being undiscovered resources) which will be explored in the future where it is an open question whether they will be economically producible or not at the prices at that time in the future (see Figure I.1-2).

Menge Unsicherheit

Kumulierter Verbrauch Sichere Reserven

Zusätzlich gewinnbare ExploRessourcen Ressourcen ration Hypothetische Ressourcen

Figure I.1-2:

Bekannte, unwirtschaftliche

Techsowie unbekannte, wirtschaftnischer liche Lagerstätten Fortschritt Unbekannte und unwirtschaftliche Lagerstätten

Scheme of natural resources, structured in: resources already used in the past, proven reserves (partially economically producible and partially not), and resources to be discovered, both economically producible or not

The concept of stationary duration of reserves simply refers to entrepreneurial considerations that 40 years of proven and economically producible reserves is a sufficient signal not to invest more than business as usual in exploration of new reserves.

14

This leads to the question of how much resources may be explored in the future. The answer is not easy because technical progress in secondary and tertiary production of oil may shift the line between producible and non-producible resources in the future decades (see Figure I.1-2). Some experts assume that total recoverable resources are in the order of 2’000 Gt whereas others assume a potential of 2'600 Gt of conventional crude oil. This dispute is not unimportant for the decades to come, as the 50 % depletion of oil resources is expected during the next decades (see Figure I.1-3). The time of the depletion mid-point of crude oil does not only depend on the recoverable resources, but also on the oil demand within the next decades. If energy efficiency makes fast progress and the substitution of oil products (heating oil, gasoline, diesel and jet fuel, petro-chemically based plastics develops quite fast, one can expect a late mid depletion point for oil (e.g. after 2030). The timing of the depletion mid-point is quite important, as at this point in time the global energy price level is likely to increase substantially. Crude oil will be still the market leader in those times and today, almost a 100 % of the world road, ship and air transport are dependent on oil products. This is one extreme challenge the world economy is facing in the next few decades and one reason why large automobile manufacturers and governments are intensively searching for fuel alternatives (synthetic fuels from coal (where large reserves exist), biomass, and solar hydrogen).

oil production in Mio t per year

Figure I.1-3

Expected times of the depletion mid-point of crude oil in the next few decades, depending on assumption of recoverable resources and global use of oil products

There is one other aspect of oil reserves, resources, future oil price development and security of supply: the spatial distribution of the remaining oil resources. According to the estimates of geologists, two thirds of the remaining oil resources are located in the Middle East ME), a world region with not very stable political conditions (see Figure I.1-4). This is why some policy scientists argue that the attention Middle East countries receive from OECD-countries or China and India is not so much due to

15

humanitarian and democratic aspects, but to geopolitical considerations of security of oil supply. Source : IEA 2005

Figure I.1-4

World ultimately recoverable conventional oil: 1’000 billion b already used, 1’100 billion b in Middle East OPEC countries, 650 billion b in the rest of the world

In addition to this uneven distribution, the production cost of the Middle East oil is rather low at some 5 to 15 $ per barrel) compared to other oil fields in the sea or deep sea, in Alaska or Syberia that ranges between 15 to 60 $ per barrel (see Figure I.1-5). At the cost level of deep water production or in the Arctic, enhanced oil recovery (EOR) will become competitive and also unconventional oil from tar sands and oil shales (between 20 and 60 $ per barrel; see Figure I.1-5). The projected oil demand for 2030 suggests that the production costs of oil are in the order of 30 $ per barrel; in addition to these costs there may be royalties that are taken by the oil producing countries (see Figure I.1-6). However, in the period of stagnation of production it is very likely that oil demand determines the oil price and not the production cost (see also the changes of the oil price during the 20th century in Figure I.1-7). This also means that the total demand of primary energy can be influenced by the efficient use of energy and the total oil demand can be influenced by substitution to other fossil fuels and renewable energies.

16

Source: IEA 2005

Figure I.1-5

Production cost of conventional and unconventional oil from different production fields in different regions of the world

Source: IEA 2005

Figure I.1-6

Available conventional and unconventional oil resources with respect to their production cost and the range of cumulative oil demand by 2030

The decline of the oil price in 1985, five years after the steep oil price increase due to the revolution in Iran was due to the fact that the high oil price made production of oil

17

in difficult environments possible, e.g. the North Sea (where production is peaking in this decade even with enhanced oil recovery, see Figure I.1-8), the Mexican Golf, Alaska or Siberia.

70 60

E n td e c k u n g S p in d le to p T e xa s

P e n n s y lva n is c h e r Ö l ‚B o o m ‘

50 40 30

S u m a tra P ro d u k tio n b e g in n t

U n te rb ru c h Ira n is c h e r L ie fe ru n g e n

P ro d u ktio n in V e n n e z u e la wächst

R e v o lu tio n in Ira n

Suez K ris e

A n g s t vo r N a c h k rie g s K n a p p h e it w ie d e ra u fb a u in U S A E n td e c k u n g in O s t-T e xa s

B e g in n R u s s is c h e r Ö le xp o rte

20

Yom K ip u r O P E C fü h rt n e u e s P re is s y s te m u n d , s p ä te r, Q u o te n re g e lu n g e in

10 1861 1870

1890

1910

1930

1950

1970

1990

Figure I.1-7

Development of the oil price (at constant prices of 1992), 1861 to 1992, in US $ per barrel [159 l ]

Figure I.1-8

Oil production in the North Sea, 1974 to 2000, peaking in 2010?

Looking at the period of industrialised countries in a very long perspective of mankind the use of oil and other fossil fuel will be not more than an episode which was first spelled out by M. King Hubbert in 1949 (see Figure I.1-9).

Erdölverbrauch (in beliebigen Einheiten)

18

100

E r d ö l: V e r b r a u c h g e s e h e n 80

d u rc h s M a k ro s k o p (n a c h M . K in g H u b b e r t , 1 9 4 9 : H u b b e r t ‘s p im p l e )

60

40

20

0 -1 0

-8

-6

-4

-2

h e u te

2

4

6

8

10

Z e it a b s t a n d v o n h e u t e (in T a u s e n d e n v o n J a h r e n )

Figure I.1-9

The peaking of the world use of fossil fuels within a few centuries

1000 800 600 400 200 0

Afrika

N ord Am erika

S üd Am erika

Produktion

Figure I.1-10

Asien

E uropa

Mittlerer Osten

Oz eanien

V e rbrauch

The uneven regional distribution of oil production and oil use, in million tons per year

Africa and the Middle East produce an enormous surplus of oil that is absorbed by the industrialised and emerging countries in North America, Europe and Asia (see Figure I.1-10). The patterns of production and consumption of natural gas are similar to those of the oil (see Figure I.1-11), the difference being that • the exploitation started about 50 years later, • the natural gas is more difficult to transport reflected in not one world market, but

in three regional markets (North America, Africa, and Europe/Asia) determined by

19

the transportation by pipe lines. This will change in the future by liquefied natural gas. • the ratio of proven reserves to yearly consumption is now 60 years due to the

faster increase of gas production that was 2.0 % per year during the last 15 years (oil: 1.3 % per year).

180 160 140 120 100

Kummulierte Förderung (Bill. m3) Ursprüngliche Vorräte (Bill. m3) Statische Reichweite (Jahre)

80 60 40 20 0

1960

1970

1980

1990

Figure I.1-11 Cumulative production, proven reserves, and ratio of proven reserves to yearly consumption of natural gas, 1960 to 1990

The conclusions of these considerations are as follows: • Oil resources will be available for far more than 100 years, so will natural gas and

coal. But oil production is likely to peak within the next 25 years which is critical from the economic point of view. • The critical moment is not the moment of depletion of a non-renewable resource,

but after its depletion mid-point, if shrinking energy demand is not in line with shrinking oil production; if there is a mismatch, high price increases of oil have to be expected. • The uneven distribution of oil (and of natural gas) resources will give raise to many

political tensions in the future, particularly in the Middle East, questioning continuous economic development and social sustainability at a global level. • The question of resource availability for future generations is not critical for fossil

fuels, but extremely critical from the point of view of CO2 emissions: the critical question is where to dispose the CO2, as even at present emission rates mankind would need three atmospheres to avoid unsustainable climate changes. Global primary energy demand can be distinguished in several phases: a long period over eight decades with slowly increasing demand until the end of World War II, a steep increase in per capita energy use between 1950 and 1979, and a stagnation per capita primary energy use thereafter (see Figure I.1-12). The increase of world primary energy demand is still driven by increasing world population.

20

Nuclear power Natural gas

Oil

Hard coal Lignite Hydro power Wood

Figure I.1-12 World primary energy demand, per capita energy use, and world population, 1875 to 2000

21

I.2.

Ecological Economics

Neoclassical economics consider the natural resources as rather independent for the economic system (see Figure I.2-2). The resources taken out from the earth are only priced with production cost at the margin, and sometimes by royalties representing the fact that some capital has to be gained. This is needed to substitute the use of natural resources by capital investments (more efficient use, substitution by another resource, and another source of income for the producing country; see Dubai). The release of wastes into the environment has generally no price (e.g. rest of water pollution such as salts, non-degradable chemicals, hormones; rest of air emissions: release of greenhouse gases, NOx, SO2, small particles). Ecological economics try to assess the economic value of those streams of masses (see Figure I.2-1). The sun is the only “renewable resource” (for a longer period of some thousands or even billion years, see also Figure I.1-9, the Hubbert function).

Sonne Geologie Klima Flora Fauna

Wirtschaft

Geologie Klima Flora Fauna

Veredlung der Sonnenstrahlung

Wirkungsgrad „Brot“: Klima und Gebirge -> Wasserkraft 10- 6 „Wein“: Kohlestoffkreislauf -> Biomasse 10- 3 „Cognac“: Biomasse -> Kohlenwasserstoffe 10- 8 (P. Kesselring)

Figure I.2-1

Ecological Economics – in contrast to neoclassical economics ecological economics are considering the economy as part of the natural environment

22

Cycle of money and goods in an economy forei gn consumers

foreign producers Market for goods and services

Na tural envi ronme nt

energy use

es ag

Figure I.2-2

w s, ri e ala

Natural resources

Market for pro duction i np uts, e.g. la bour, capita l

e. g. lab ou r

e.g. social security e.g. subsidies benefits Publ ic authority at federal , Pri vate Compani es Households r egional and local l evel e.g. ta xes e.g. ta xes

.s e.g

M: \CEPE Zürich\Vorlesung \Lausanne \SS -2003 \Folien \Teil 2.ppt

Natura l environment

Money G oods

The neoclassical model of the economy – the natural environment often not economically compensated for drawing upon the resources

combination at low energy prices and present technology combination at high energy prices and present technology combination at high energy prices and future tehnology present technology options future technology options needed capital

M:\CEPE Zürich\Vorlesung\Lausanne\SS-2004\Folien\Vorlesung 4\Vorlesung 4.ppt

Figure I.2-3

Substitution between capital and the use of natural resources

The relation between the use of natural resources and of capital can be considered in a wide range as a substitution relation: the more capital in the efficient use of a natural resource is invested the less of this resource is needed (see Figure I.2-3). Technological progress opens up new opportunities of efficient use of natural resources.

23

J a h rm illio n e n

K o h le

H o lz

E rd ö l

O rg a n is c h e

E rd g a s

S u b sta n z e n

H o lz

Sonne

W a s s e rk ra ft

Regen

W in d

K lim a s ys te m

S o n n e n s tra h lu n g

Welterdölförderung

an der Share of oilProduktionsanteil production of global production

Figure I.2-4

The sun is the most important energy source

70

OPEC insgesamt total

60 50

49

(OAPEC)

39.7 37.1 35

30

29

27.9 24.1

25.9

20 16.5

10 0 1980

1990

50

Middle East Naher Osten

42.5

40

63

2000

2010

world oil proven reserves 2000 • Saudi Arabia 25.3% • Iraq 10.8% • Kuwait 9.3% • Arab Emirates 9.2% • Iran 8.7% • Qatar et al. 3.0% • Middle East 66.3%

2020

2030

Zeit time World oil production 1985-2020. Source : CEPE, 2001

Figure I.2-5

Reconcentration of oil production in the Near East, owning two thirds of global oil resources

24

Figure I.2-6

Global atmospheric concentration of CO2

High : ¾ 18400 EJ conventional oil, 13000 EJ natural gas, phase out nuclear by 2075 ¾Constant aerosol concentrations beyond 1990 and high climate sensitivity of 4.5 °C

Low : ¾ 8000 EJ conventional oil, 7900 EJ natural gas, nuclear costs decline by 0.4% annualy ¾Constant aerosol concentrations beyond 1990 and high climate sensitivity of 1.5 °C

The 2 middle curves : ¾ 12000 EJ conventional oil, 13000 EJ natural gas, solar costs fall to 0.075$/kWh, 191 EJ of biofuels available at 70$/barrel ¾ Upper curve : Constant aerosol concentrations beyond 1990 and climate sensitivity of 2.5 °C ¾ Lower curve : changes in aerosol concentration beyond 1990 and climate sensitivity of 2°C

Figure I.2-7

25

Sea level rise commitment : thermal expansion and land ice melt over 900 years after an initial 1% increase in CO2 for 70 years, source IPCC, 1995

Figure I.2-8

26

I.3.

The concept of sustainable development

Definition The concept of sustainable development has appeared as an answer to the major risks generated by the deterioration of the environment quality which has risen from pollution and harmful effects with a heavy influence on climatic changes and losses of biodiversity. But it also took into consideration the uneven distribution of wealth and resource use among the industrialised and developing countries. The concept, in its current acceptance, has spread over time since the beginning of the seventies. Its course is marked out by a gradual awakening through several issues among which: • the OPEC petroleum crisis in 1973 and again in 1979/80, • the discovery of the Antarctic ozone hole in 85 or, • the accident of the nuclear power plant of Chernobyl in 86,

and important contributions from studies like: • the report of the “Club de Rome” in 1971 which has highlighted the threat of natu-

ral resources exhaustion by an extrapolation of the economic growth over one century, or, • “Stratégie mondiale de la conservation”1 in 1980 in which the term of sustainable

development has been used for the first time. Various definitions followed one another until the consensus introduced by the Brundtland UN-Commission Report in 1987 whose work was confirmed in a formal way by the Conference of the United Nations for the environment and the development held in Rio de Janeiro in 1992. The adopted general definition presents the sustainable development as a development "which meets the current needs without compromising the capacity of the future generations to satisfy their own needs". It delimits sustainable development as the intersection of three spheres by postulating that a development cannot be viable unless reconciling the three undissociable social, economic and ecological aspects.

1 UICN (Union Internationale sur la Conservation de la Nature), Gland, Suisse.

27

Social

Fair

Economic

sustainab

sustainable

Bearable

Viable

Environment

Figure I.3-1:

Principle of sustainable development – as an accepted equilibrium of societal, economic, and environmental concerns of today and in the long term future

However, this consensus lies between two opposite visions of sustainable development, which are the strong and weak visions (see also Figure I.3-1). Strong vision of Sustainable Development The strong vision is a very ecologist position which considers that a development wouldn’t be effectively sustainable unless making the environmental issues as a priority. This point of view is based on: • The fact that the capacities of the ecological system are not extensible • The irremediable character of the deterioration of the environment (more than the

social issues) • And the principle of precaution (without including any considerations for the devel-

opment of future technologies) This approach deals with the decision making process in a hierarchical way by considering the environmental aspects or issues first as the principal criteria for the evaluation of a project. In general, the partisans of the strong vision militate for a radical change of the society.

28

D is z ip lin

P rin z ip

G re n z e n

N a tu rw is s e n s c h a ftle r

T ra g fä h ig k e it

F e s t/ u n u m s tö s s lic h

S ta rk e N a c h h a ltig k e it

G re n z e n d e r S u b s titu ie rb a rk e it

S chw ache N a c h h a ltig k e it

S u b s titu ie rb a k e it v o n v e rs c h ie d e n e m K a p ita l

M a n a g e r / W o rld B u s in e s s C o u n c il

E c o -e ffic ie n c y / P ro d u c t s te w a rd s h ip

K e in e T ra g fä h ig k e its g re n z e n

V ie le In g e n ie u re

E ffiz ie n te r is t b e s s e r

O ft n u r p h y s ik a lis c h e G re n z e n

Ö konom en

Figure I.3-2

Different interpretations and visions of sustainability by various disciplines and professional communities

Weak vision of Sustainable Development The weak vision corresponds to an economist approach which argues that "the natural capital which is threatened by exhaustion is entirely substitutable over time by technological or financial capital". The priority here is thus given to the economic aspects while considering that the environment (and social) protection must be based on a strong economy. These two opposite perceptions are also reflected, to a certain extent, on the level of the development policies of the industrialized, the countries in economic transition, and the emerging and developing countries. The first will tend to give a relatively higher importance to the environmental and social aspects while the others are likely to focus on the economic aspects of their development.

Social Transitioneconomies OECD countries Developing countries

Environmental Figure I.3-3

Economic

Social, environmental and economic aspects of development policies objectives of industrialised, transition-economies and developing countries

29

I.3.1

Energy and sustainable development

From the perspective of these three fields, social, economic and environmental, the produced and consumed energy plays an essential role. Energy is closely related to several social problems like the reduction of poverty, urbanization, alphabetization, the sanitary conditions and the demographic growth. This social aspect, considered as acquired in the industrialized countries, is thus one of the major waiting of developing countries population, which the development of adequate energy services can help to satisfy. The satisfaction of this need is also one of the necessary conditions for the political stability and the economic development of these countries (see Figure I.3-4). It is important to realise that the "energy poor" is not just a problem of the developing and emerging countries but also relevant in countries in economic transition and industrialised countries reflecting the uneven social in income situations. Turkey and Mexico as OECD countries have a rather low average per capita energy use at around 2000 Watt per capita reflecting little heating demands, but also little industrialisation and motorisation in the average. Russian figures show a large deviation from its average meeting in its upper decentil the high consumption of almost 23,000 Watt per capita and 2,300 Watt at the lower decentil. The degradation of the environment associated with the energy production and use, particularly related to fossil fuels, affects the quality of life, the ecological equilibrium, the climate, and the biodiversity. This degradation resulting from the human activities has largely accelerated during the 20th century. The threat of the natural resources exhaustion necessitates searching for alternative solutions as much as optimization and amelioration (in term of pollution but also efficiency) of the current energy systems. From the economic point of view, the relation between the energy price and energy use is one of most important problems. The energy price influences the consumers’ behaviour and choices, and has effects on all sector levels (tertiary, domestic, industrial). The price must be able to balance the social welfare and an incitation for energy rational use while providing an incentive for the investments (for the supply security, the quality of service, for the improvement of energy efficiency as well as for the research and development of new resources). The principal challenge on the long term will be to develop the energy systems to find ways to satisfy the growing demand for energy in developing countries to support their desired economic growth without incurring the adverse consequences associated with current patterns of energy use and production.

30

E nergieverbrauch pro K opf in verschiedenen Ländern und B e völkerungsschichten

Figure I.3-4

Energy demand per capita and its distribution in industrialised countries, countries in economic transition, in emerging and developing countries

The ambition of sustainable development is thus to reconcile the economy with its ecological and social context. For that purpose, it has to include the effective ecological and social costs (see Chapter on externalities) of any project of development or infrastructure creation in their assessment process. If sustainable development is based on a system of values (social equity, economic viability and protection of the environment) then the economics could be a possible evaluation tool for its application. Energy technologies and available energy carriers have always influenced the economic as well as the societal development of a country (see Table I.3-1). • The availability of coal enabled the early industrialising countries to make steel,

develop the railways and to manufacture vehicles in mass production. • The large availability of inexpensive oil and oil products enabled the development

of the road transportation infrastructures, the production of plastics, and comfortable heated houses and buildings. • The availability of natural gas reduced the pressure on oil efficiency and serves as

a substitute for many applications of oil products with less air pollution.

31

Table I.3-1

Availability of primary energy determining the technological, societal and economic development of countries and world regions, of transport systems and materials and their use

Zeitalter der/des...

bis

Primärener- Energiesystem gie

Transportmittel

Industrielle Produktion

... Textilien

1820

Wasserkraft

Wasserräder

Postkutschen

Textilien

... Eisens

1870

Holz

Dampf

Kanäle

Eisen

... Kohle

1940

Kohle

Elektrifizierung der Industrie

Eisenbahnen

Stahl

... Erdöls

1990

Erdöl

Elektrifizierung der Haushalte

Strassen

Kunststoff

...Informatik

2040

Erdgas

Massiver Einsatz Flugzeuge von NIT*

TQM**

32

II. Bestimmungsfaktoren der Energienachfrage – Influencing factors of energy demand Efficient Energy Use in the Final Energy Sectors The objectives of the course are: • understand the energy flow in an economy from the perspective of energy ser-

vices, inducing demand for useful energy, final energy, and primary energy; • get an basic understanding of energy efficiency potentials (theoretical, technical,

societal/welfare economics, micro-economic, expected potential); energetic and exergetic; • realise the effects on energy services by material efficiency and material substitu-

tion; • understand structural effects on energy productivity or energy intensity and ex-

plain the trends of energy intensities of industrialised and developing countries.

II.1. The energy flow diagramme – starting at the energy services People do not want to use energy, they want services like comfortable rooms, illuminated houses or streets over night, to comfortably move from one place to another, tasty and healthy food or a warm shower. If this service involves some energy to deliver the service the energy is perceived as a necessary good, as a prerequisite to receive the service. This energy need is technology dependent: the average house needs about 200 kWh/m2 and year to deliver the comfortable rooms in the winter period, while a solar passive house needs only 15 kWh/m2 and year for the same comfort level. The losses of space heat (at the level of useful energy) are almost half of the energy losses at this level of the energy flow (see Figure II.1-1). The useful energy (heat at different temperatures, moving power for vehicles or electric drives, illumination, electronic calculations) is produced by energy converting technologies from final energies (e.g. gas or heating oil boilers, internal combustion engines, electric motors, or bulbs). The largest losses occur in the engines and gear boxes of road vehicles (80 %) and in bulbs with even 90 % losses (see Figure II.1-1). The final energy is delivered to the final energy consumer in form of heating oil, gasoline, jet fuel, natural gas, electricity, district heat or wood chips by energy companies or energy trade. Final energies are produced in refineries, power plants, district heat generating plants or wood chip producing plants. The largest losses occur in the thermal power plants that have an average efficiency of 36 % in Europe (see Figure II.1-1). For Switzerland, the losses of the transformation sector from primary to final energy are about one fourth and amount to 37 % and 38 % respectively for the conversion from final to useful energy level and for the losses of useful energy. Some of the energy services can be reduced more efficient use of material or material substitution

33

reducing the demand of metals, plastics or braking losses of moved parts and vehicles.

34

Source: Schweizerische Gesamtenergiestatistik 2004, BFE

Figure II.1-1

From energy services to useful energy, final energy and primary energy demand, Switzerland 2004

35

Source: Bundesamt für Energie, Gesamtenergiestatistik 2004, Bundesamt für Energie, S. 14, http://www.bfe.admin.ch/php/modules/publikationen/stream.php?extlang=de&name=de_183763 736.pdf&endung=Schweizerische%20Gesamtenergiestatistik%202004

Figure II.1-2

Primär-Energieeinsatz und End-Energieverbrauch in der Schweiz 2004

Der Primärenergiebedarf der Schweiz betrug im Jahre 2004 etwa 1.170 PJ. Der Pro Kopf-Primärenergieverbrauch lag 2004 bei 157 GJ/cap (1990: 151GJ/cap). Der höchste Anteil des Erdöls am Primärenergiebedarf lag 1971 bei 76% und reduzierte

36

sich langsam auf 46% im Jahre 2004, was im europäischen Vergleich recht hoch ist (unter 40%). Der Erdgasanteil nahm seit 1973 stetig bis auf 9,1% im Jahre 1996 zu, stagnierte bei diesem Anteil bis 2002 und nahm dann bis 2004 auf 9,7 % zu.

II.2.

Energy efficiency potentials (theoretical, technical, societal/welfare economics, micro-economic, expected potential)

This part gives first some empirical examples on efficient energy use in several sectors in the past, before a second analytical part develops the concept of energy efficiency. the third part looks into the future reporting the vision of the Board of the Swiss Institutes of Technology of the 2000 Watt society. A final part looks at the energy intensity of a country.

II.2.1

Empirical examples of efficient use of energy

Die Entwicklung des spezifischen Energiebedarfs von Kraftmaschinen und Beleuchtung zeigt eindrücklich, • wie lange der technische Fortschritt anhalten kann, und sei es durch Übergang zu

neuen Technologien (Beispiel: Glühbirne, Fluoreszenzleuchten, Dioden); • wie relativ konstant der energiesparende technische Fortschritt über die Zeit sich

entwickeln kann.

37

Figure II.2-1

Efficiency development of power machines and lighting over centuries

Diese Beispiele sind nur exemplarisch und wären durch weitere –selbst bei sehr energieintensiven Industrieprozessen– zu erweitern, stets mit einem sehr ähnlichen Verhaltensmuster (vgl. Koksbedarf bei der Rohstahlherstellung, Brennstoffbedarf beim Brennen des Zementklinkers oder der Glasherstellung, vgl. Literatur). Ein weiteres Beispiel ist der Heizenergiebedarf von Häusern und Gebäuden. Der energietechnische Fortschritt verläuft beim Gebäudebestand deshalb sehr langsam, weil die Gebäude eine Lebenszeit von mehr als 100 Jahren in der Schweiz haben und die Fassadenerneuerung etwa alle 40 bis 50 Jahre erfolgt. Durch die hohen Energiepreissteigerungen in den 1970er Jahren wurde viele technische Verbesserungen bei der Gebäudehülle und der Heiztechnik in Europa durchgeführt (vgl. Beispiel in Figure II.2-2).

38

Figure II.2-2

Spezifischer Heizölverbrauch von Mehrfamilienhäusern, Neubaustandards, Heizanlagen VO und Wärmebedarf von Forschungshäusern in Deutschland, 1970-2000

Demnach verminderte sich der spezifische Heizölverbrauch für Mehrfamilienhäuser in Deutschland zwischen 1971 und 1999 um zwei Drittel. Außerdem zeigt sie den spezifischen Wärmebedarf von Energiespar- und -solarhäusern, die in der gleichen Zeitspanne zunächst Forschungs- und Entwicklungsprojekte waren, und verschiedene energiepolitische Massnahmen zur Verminderung des spezifischen Energiebedarfs von Gebäuden in Deutschland (Baustandards, Standards für Heizanlagen, Regelung für die Heizkostenverteilung in Mehrfamilienhäusern). Am nachhaltigsten wirken langfristig die Baustandards (WärmeschutzVO in Deutschland, SIA 380 in der Schweiz). Es ist absehbar, dass der spezifische Wärmebedarf Ende dieses Jahrhunderts unter 50 kWh/m2a liegen wird, d.h. ein Zehntel des Wärmebedarfs im Jahre 1970.

39

Figure II.2-3

Energieintensitäten des verarbeitenden Gewerbes in Deutschland (nur alte Länder), 1970-1996

Ein ähnliches Bild war in den Industrien der OECD-Staaten nach 1974 zu beobachten. Die Endenergieintensität, das Verhältnis von Endenergie zur Nettoproduktion, des Verarbeitenden Gewerbes hat in allen Industrieländern eine abnehmende Tendenz. Dieser Rückgang ist auf drei Einflüsse zurückzuführen: • den interindustriellen Strukturwandel (die energieintensiven Branchen wachsen

langsamer als die energieextensiven Branchen); dieser Effekt ist in der Schweiz seit 1990 sehr gering; • den intra-industriellen Strukturwandel (die Produktpalette verschiebt sich zu mehr

energieextensiven Produktionen und Produkten sowie zu wertschöpfungsintensiven Produkten, z. B. Pharmaka in der chemischen Industrie), • die rationellere Nutzung von Energie, insbesondere von Brennstoffen (z.B.

Schweiz –1%/a zwischen 1980 und 2001; vgl. Figure II.2-4). Unterteilt man den Endenergieverbrauch in Strom und Brennstoffe, so stagniert die Stromintensität des Verarbeitenden Gewerbes über Jahrzehnte, weil die zunehmende Automation und zunehmende elektrotechnische Prozessanwendung die o.g. strukturellen und Elektrizitätseffizienz gerade wieder kompensierten (vgl. Figure II.2-4). In der gesamten Wirtschaft nimmt dagegen die Stromintensität meist noch leicht zu. Denn im Dienstleistungssektor verläuft der spez. Stromverbrauch wegen weiterer Büroautomation, Internetnutzung und Klimatisierung steigend, so z.B. in der Schweizer Wirtschaft (einschließlich Industrie) um durchschnittlich 0,5% pro Jahr seit 1980 (vgl. Figure II.2-4).

40

Quelle: BFE 2001, 2002

Figure II.2-4

Endenergieintensitäten der Schweizer Wirtschaft, 1980-2001

Betriebe in Industrie und Gewerbe haben häufig erhebliche wirtschaftliche Energieeffizienzpotentiale, die den Betriebsleitern selbst meistens gar nicht bekannt sind. Vielfach sind es alte Kessel-, Druckluft-, Dampf- oder Kälteanlagen, die überdimensioniert sind, schlecht gewartet und seit Jahren nicht beachtet. Hierbei handelt es sich insbesondere um energietechnische Nebenanlagen, die mit der Produktion nur mittelbar verknüpft sind. (Literatur: Romm, 2000: Cool companies).

41

Table II.2-1

Examples of no regrets discovered by ISI in 1996

Da die Produktionsanlagen mehr im Blickfeld der Betriebsleiter stehen, sind Energieeinsparpotenziale an den Anlagen häufig kleiner oder nicht so offensichtlich, und nur durch mehr Prozess-Know-how erkennbar und durch Prozess-Substitutionen realisierbar. Die spezifischen Energieverbräuche sind in den Betrieben des verarbeitenden Gewerbes oder der Dienstleistungssektoren sehr unterschiedlich, obwohl die Produktion sehr ähnlich oder gleich ist. Die Ursachen dieser Unterschiede sind vielfältig: • Gemessen an einem hochmodernen neuen Werk auf der „grünen Wiese“ sind

manche Produktions- und Nebenanlagen noch nicht abgeschrieben und laufen mit dem energietechnischen Stand der 80er oder frühen 90er Jahre (wirtschaftlich im bestehenden Werk). • Schlechte Dimensionierung, gemessen am heutigen Wärme- und Kraftbedarf so-

wie eine mangelhafte Planung der bestehenden Anlagen oder die Nichtbeachtung von veränderten Bedarfsstrukturen können dazu führen, dass bis zu 30% Energie benötigt wird, die als unnötiger Verbrauch bezeichnet werden muss (typische Beispiele: Kesselanlagen, Dampfverteilungsanlagen, Druckluftanlagen; vgl. Table II.2-1). • Hinzu kommen nicht selten eine schlechte Betriebsführung wie leerlaufende Ma-

schinen, unterkühlte Räume oder zu hoch gefahrene Prozesstemperaturen. Insgesamt kann dies zu einem doppelt so hohen Energieverbrauch führen wie das neue, voll optimierte Werk an einem neuen Standort.

42

Quelle: RAVEL, 1996

Figure II.2-5

Der Einfluss organisatorischer Massnahmen auf den Energiebedarf eines Betriebes

Ein Zwischenfazit und weitere Überlegungen (vgl. Figure II.2-6): • Auch wenn sich nachweislich die einzelnen Energieanwendungstechniken über

Jahrzehnte mit besseren Wirkungsgraden betreiben lassen, so kommt unweigerlich eine theoretische Grenze; diese kann aber häufig durch einen Technologiewechsel übersprungen werden. • Allerdings sind häufig bei Systemen der Branchen der Energieanwendung ver-

schiedene gegenläufige Effekte im Spiel (Mechanisierung/Automation/höherer Komfort), so dass bei oberflächlicher Betrachtung kein Fortschritt der Energieeffizienz zu beobachten ist (z.B. bei den Stromintensitäten). • Ökonomen sprechen deshalb zuweilen vom „stair case“-Effekt: Die Energieein-

sparmöglichkeiten, die seit den 70er Jahren in den OECD-Staaten bewusst realisiert wurden, würden sich im kommenden Jahrzehnt allmählich erschöpfen und dann der weltweite Energiebedarf pro Kopf wieder stark ansteigen wie früher bei den Industriestaaten. • Demgegenüber hat der ETH-Rat im Jahr 1998 die Vision einer 2000 W pro Kopf-

Gesellschaft skizziert, d.h. eine Verminderung des Pro-Kopf Energiebedarfs um zwei Drittel gegenüber heute auf etwa 65 GJ/cap bis Mitte dieses Jahrhunderts, bei einer weiteren Erhöhung des Wohlstands (ETH-Rat, 1988).

43

Im folgenden soll daher geprüft werden, welche technologischen Entwicklungen der Energieeffizienz geeignet wären, dieses langfristige Ziel zu erreichen und ob der "stair case"-Effekt , von dem einige Ökonomen sprechen, eher unwahrscheinlich ist.

Figure II.2-6

Strategische Ansatzpunkte der rationellen Energienutzung

Auf der bisher wenig beachteten Stufe der Nutzenergie lassen sich manche Energieverluste vermeiden, wenn man ihre Ursachen genauer analysiert (vgl. Figure 2-7): das Exergiegefälle beachtet (2), Prozess-Substitutionen in die Betrachtung mit einbezieht (3), Wärme- und Bewegungsenergie speichert (4) und nicht zuletzt auf Kostenreduktionsmöglichkeiten achtet (5).

II.2.1

Das analytische Konzept der Energieeffizienz

Die Potenziale der rationellen Energieanwendung (oder auch der erneuerbaren Energien) lassen sich unter technischen und wirtschaftlichen Aspekten in folgender Form typisieren (Goldemberg, 2000, vgl. Figure II.2-7): • Für ein bestimmtes Jahr in der Zukunft gibt es ein Energieeffizienzpotenzial, das

durch Re-Investitionen und verbesserte Organisation bei den gegebenen ener-

44

giewirtschaftlichen Rahmenbedingungen als erreichbar angesehen wird (Erwartungspotenzial). • Eigentlich wären mehr Energieeffizienzinvestitionen rentabel, aber sie werden aus

vielen Gründen (mangelnde Kenntnisse, Hemmnisse, Marktunvollkommenheiten) nicht realisiert (einzelwirtschaftliches Potenzial). Hier kann die Energiepolitik das Erwartungspotenzial vergrößern. Wenn die Energiepreise steigen, nimmt auch das wirtschaftliche Effizienzpotenzial zu.

Figure II.2-7

Unterscheidung der Energieeffizienzpotenziale vom theoretischen bis zum Erwartungspotenzial

• Mit der Energienutzung sind externe Kosten verbunden, die auf 2 bis 5 Rp/kWh

veranschlagt werden, aber nicht in den Energiepreisen enthalten sind. Wären sie es, so würde sich aus volkswirtschaftlicher Sicht das Potential erweitern (gesamtwirtschaftliches Potenzial). • Die Ingenieur- und Naturwissenschaften erweitern ständig das technische Ener-

gieeffizienzpotenzial durch technische Verbesserungen oder ganz neue Technologien und Materialien mit geringerem spezifischen Energiebedarf. Nur ein Teil des technischen Potenzials ist wirtschaftlich; es ist in Prototypen und Laboranlagen stets als realisierbar zur Verfügung. • Viele Dinge sind theoretisch noch energieeffizienter zu betreiben (z.B. Membran-

verfahren statt thermischer Trennverfahren, geschäumte Metalle bei bewegten Teilen etc.). Diese müssen aber erst technisch im Entwicklungslabor realisiert werden, bevor sie als technisch machbar bezeichnet werden können (theoretische Potenziale). Das theoretische Potenzial wird auf 80-90% geschätzt (Jochem, 1991).

45

relativ zu • Stahl-Dünnbandgießen statt Strangguss

-30 bis -50%

• Passivenergiehaus mit 20 kWh/m2

-70% SIA 380

• Trennung von Stoffströmen mittels Membranen statt thermisch

-60 bis -85%

• enzymatisch bei 20°C färben statt mit 140°C im Jet

bis zu -99%

• Gewicht von Fahrzeugen reduzieren, Cw-Wert mindern

-20 bis -30%

• bewegungsgesteuert statt stand-by

-90 bis -95%

Figure II.2-8

Nutzenergiebedarf senken durch Prozesssubstitution und Vermeiden von Wärmeverlusten

In der Vergangenheit wurde meist das Augenmerk der rationellen Energieanwendung auf die Energiewandler gelegt, z.B. bei Kraftwerken, Raffinerien, Kesselanlagen, Brenner, Gasturbinen, Verbrennungsmotoren, Elektromotoren, Pumpen, Kompressoren oder Wärmetauschern und -pumpen, nicht aber auf die Verminderung von Nutzenergie, deren Verluste 37% (bezogen auf den Primärenergiebedarf) in der Schweiz betragen. Die Beispiele (vgl. Figure II.2-8) zeigen Technologiesubstitutionen (Stahlwalzen, Gebäudewärmeschutz, Stofftrennung in individuellen Prozessen, Färben von Textilien) sowie Verbesserungsinnovationen (PKW und bewegungsgesteuerte Beleuchtung oder Unterhaltungselektronik). Die hier genannten technischen Potentiale zeigen durchschnittlich 40-60%, die binnen der nächsten 20 Jahre auch wirtschaftlich sein könnten (soweit sie es heute noch nicht sind). Am Beispiel der Aufzüge in Wohn- und Bürogebäuden lässt sich zeigen, dass sich aufgrund der modernen Leistungselektronik ein völlig neues Gebiet der Rückeinspeisung von Bremsstrom elektrisch getriebener Aggregate eröffnet (vgl. Figure II.2-9). Der Strombedarf kann in diesem Beispiel vom einfach betriebenen Aufzug mit konventionellem polumschaltbaren Antrieb um 80% gesenkt werden, wenn er mit Rückspeiseeinheit, hocheffizientem Elektromotor und einem Sondergetriebe ausgestattet ist.

46

Quelle: Siemens, 1999

Figure II.2-9:

Strombedarf verschiedener Aufzugssysteme für Gebäude

Ähnliche Anwendungen sind in vielen Bereichen anzutreffen, wo bewegte Teile abgebremst werden. Je häufiger diese Abbremsung erfolgt, desto eher dürfte die Stromnetzrückspeisung rentabel werden, u.a. in brennstoffzellen-betriebenen Fahrzeugen, die zwischen 2006 und 2008 – nicht zuletzt wegen der kalifornischen Umweltgesetzgebung für PkW – auf den Markt kommen werden.

Die Stromerzeugung in thermischen Kraftwerken hat Verluste zwischen 40% (GasGuD-Ktraftwerke) und 65% (Kernkraftwerke). Hinzu kommen Leitungs-, Verteilungsund Speicherkraftwerksverluste von 8%. Stromnutzung als Endenergieträger, um bestimmte Nutzenergien zu erzeugen wie z.B. Warmwasser oder Niedrigtemperaturprozesswärme, ist nach dem zweiten Hauptsatz der Thermodynamik nicht sehr effizient (ca. 5 bis 10%). Denn der Exergiegehalt des Stroms könnte Wärmeenergie mit mehr als 2000°C erzeugen und ist für die Erzeugung von Wärme unterhalb von 70°C völlig "überqualifiziert" (vgl. Figure II.2-10). Es mag zwar bequem und wenig kapitalkostenintensiv sein, aber schon bei einigen kW Leistung sind die Betriebskosten der Stromanwendung relativ höher als die von technischen Alternativen.

47

Figure II.2-10

Wieso Strom als Endenergie? Exergetische Analysen legen Energieeinsparpotentiale offen.

Dieser schlechte exergetische Wirkungsgrad wird nochmals vergrössert, wenn das Verhalten verschwenderisch, unachtsam und uninformiert ist. Die Bequemlichkeit und Unwissenheit der Nutzer verschlechtert dann den Wirkungsgrad zur Energiedienstleistung noch einmal (bis zu einem Faktor 2).

II.3.

The vision of the 2000 Watt per capita society

Regarding the threat and consequences of climate change, the maximum of oil production, and the re-concentration of crude oil production in the Near East within the next few decades, the Board of the Swiss Federal Institutes of Technology promoted the vision of a "2000 Watt per capita society by the middle of the 21st century" in 1998. A yearly 2000 Watt per capita energy demand corresponds to 65 GJ/capita per year, which is one third of today's per capita primary energy use in Europe. Assuming a 70 % increase of GDP (gross domestic product) per capita within the next 50 years, the 2000 Watt society implies a factor 4 to 5 improvement in primary energy use, admitting some influence of structural change on less energy-intensive industries and consumption patterns. This vision poses a tremendous challenge for R&D to improve

48

energy and material efficiency. It is obvious that completely new technologies and supporting organisational and entrepreneurial measures are needed to meet this goal.

Figure II.3-1

Technische Handlungsfelder zur Realisierung der 2000 W/cap Gesellschaft, einer Vision des ETH-Rates

Die Vision des ETH-Rates (ETH-Rat, 1998), den Pro-Kopf-Energiebedarf bis Mitte dieses Jahrhunderts um zwei Drittel auf etwa 65 GJ/cap zu senken, erscheint technisch durchaus als machbar (CEPE u.a. 2002), weil • die Energieeffizienzpotenziale in der gesamten Nutzungskette vom Energiedienst-

leistungsbedarf bis zur Primärenergie noch ganz erheblich ist; • die energieintensiven Massenwerkstoffe nicht nur intensiver im Kreislauf geführt

werden können, sondern auch sie selbst effizienter bei gleicher Materialdienstleistung genutzt werden könnten, zum Teil sogar durch nachwachsende Rohstoffe in Zukunft substituiert werden können und • die Kosten der neuen technischen Lösungen rückläufig sind mit zunehmender

Anwendung durch Lerneffekte und economies of scale. Allerdings ist nicht abzusehen, wie kostenintensiv dies würde, weil Ressourceninanspruchnahme durch Kapitaleinsatz substituiert würde. aber selbst wenn die Kosten für eine 2000 Watt-Gesellschaft nicht sehr hoch sind (und dafür sprich einiges), bleibt die Frage der politischen Durchsetzbarkeit einer derartigen Vision. Denn in privaten

49

Haushalten geht es mehr um Präferenzen als um scharfe Wirtschaftlichkeitsvergleiche. Vielleicht zieht es der durchschnittliche (reiche) private Haushalt vor, ein schweres und ineffizientes Auto zu kaufen, dass mit teurem Solarwasserstoff betrieben wird als ein leichtes und effizientes, das aber sich wenig eignet, um soziale Anerkennung zu erzielen. So bleibt bei vielen technischen Möglichkeiten die Frage offen, inwieweit sie sich am Markt aufgrund vorhandener Präferenzen und Traditionen durchsetzen können oder nicht.

II.4.

Structural effects on energy intensity and trends of energy intensities of industrialised and developing countries

Die Energieintensität, das Verhältnis von Energieverbrauch zu Bruttoinlandsprodukt E-Intensität = Primär-Energieverbrauch/Bruttoinlandsprodukt = PEV/BIP entwickelte sich für alle marktorientierten oder Staatshandelsländer nach einem bestimmten Muster (vgl. auch Figure II.4-1): • Mit zunehmender Industrialisierung, Motorisierung und Komfort in den privaten

Haushalten nimmt die Energieintensität zunächst zu, um dann nach einem Maximum beständig rückläufig zu sein, weil -

Sättigungseffekte bei der Nachfrage nach energieintensiven Werkstoffen infolge aufgebauter Infrastruktur und Kapitalstöcke und

-

ein Trend zu höheren Anteilen der Dienstleistungssektoren am Bruttoinlandsprodukt (BIP) mit geringen Energieintensitäten

zu einem verminderten Energiebedarf je BIP führen. So ist beispielsweise der Anteil der Dienstleistungssektoren am Bruttoinlandsprodukt derzeit bei 70 % angelangt. • Je später die Industrialisierung eines Landes, desto niedriger ist das Maximum der

Energieintensität, weil das später industrialisierende Land von dem technischen Fortschritt der vorangeschrittenen Länder profitiert.

50

Energieintensität [MJ/DM '85 BIP]

35

Deutschland Referenz Deutschland CO2-Reduktion um 80 %

30

Staatshandelsländer

erwartete Trendentwicklung Entwicklung bei hohem Kapitalund Technologietransfer

25

Osteuropa

Großbritannien

20 15

ehem. UdSSR

China

Indien

Deutschland

10

Frankreich

5 Japan 0 1860

Zeit 1900

1950

2000

2050

Quellen: Chandler et al., 1990; CEC, 1996; Berechnungen (mit Währungsparitäten) durch ISI, 1997

Figure II.4-1

Energy intensities of different countries, 1860 to 2050

Die ehemaligen Staatshandelsländer (wie die ehemalige Sowjetunion oder China) haben meist sehr alte Produktionsanlagen, schlecht gedämmte Gebäude und meist alte Energiewandler mit mäßigen Wirkungsgraden, weil die Staathandelsländer keine Abschreibungen kannten und Energie in vielen Fällen ein öffentliches Gut war (z.B. für die privaten Haushalte und Dienstleistungssektoren, was ja alles öffentliche Dienstleistungen waren). Dies führte zu großen Unterschieden der Energieintensitäten bis Anfang der 1990 Jahre, die in Zukunft durch die veränderte wirtschaftliche Bewertung von Investitionen, kostenorientierte Preise für Energie und Technologietransfer durch den globalen Handel schnell abgebaut werden. Die weiteren Energieeffizienzgewinne durch neue Technologien und Technologieimporte aus westlichen Industrieländern unterstützen diesen Trend. Besonders deutlich ist dieser Aufholeffekt in China und in den osteuropäischen Ländern. Derzeit importieren die Schwellen- und Entwicklungsländer viele gebrauchte Investitionsgüter und Fahrzeuge aus den OECD-Staaten. Dadurch entwickelt sich ihre Energieintensität nicht so günstig, als wenn sie nur neueste Technologien investieren würden. dies scheitert im wesentlichen am Kapitalmangel, zum Teil aber auch am nicht vorhandenen Know-how. Wenn es gelingen würde, diese Hemmnisse zu überwinden und das Maximum der Energieintensitätsentwicklung der Schwellen- und Entwicklungsländer deutlich zu senken, wäre dies für die Lösung der Klimaproblematik sehr wichtig. Man spricht bei dieser Entwicklung der Energieintensität von "Tunneling Through".

51

II.5. Die Kosten der Produktion und der Verteilung von Energie (Elektrizität)

Vorlesung am 4. Mai 2006 Ziel/ Objectives: understand how to identify factors determining energy demand (Energiebedarfsbestimmende Faktoren - Perspektiven des BFE) - for private households / für private Haushalte - for services and industry / für Dienstleistungen und Industrie - for the transport sector / für den Verkehrssektor - for the conversion sector / für den Umwandlungssektor

Figure II.5-1

E n e r g y - F l o w D ia g ra m fo r S w it z e rl a nd 2 0 0 2 N u tz e ne r gie de r E n de ne r gie s ek t or e n PJ

En e r gy Se rv ice s

S p a ce H e a t

H e a te d R o o ms 2

N ut z ungs grad i n %

2 25

7 6, 4

P ro c e ss H e at M o ti ve Po w e rt

8 2 ,0 5 5 ,7

5 5, 6 2 0 ,0

Ot he r D ri ve s

5 2 ,8

6 0, 6

Ill u m in a ti o n

21

8 ,5

(i n qm )

In d us tr ia l Pr o d uc ts ( in to n s ) M o b i li ty ( in P a ss .km ) A uto ma ti o n , C o o l i ng Il lu m i na te d A re a s ( in q m ) P C -, Ph o n e - a n d In te r ne t U s e

In fo rm a tio n, C o m m un i c a tio n

n.d .

2 1 ,3 P J n o n -e n e r ge tic C on s u m pt io n P las ti cs , A sph alt

n .d.

In d u str y T r an sp o r ta tio n

1 68 ,5 PJ 3 02 ,8 P J

P riva te H o u seh o ld s

2 3 0,6 P J

T r ad e , C o mm er ce ,

1 53 ,5 P J

P ri mar y en erg y 1 .1 4 7 P J

Fina l E ne r gy 85 3 ,7 P J

T ra n s fo r m a t io n L o s se s

L o ss es fo r g en e ra tin g Us e fu l E n e rg y

U se fu l E n er gy

3 8 ,1 %

3 7 ,8 %

4 29 P J

4 25 P J

(I ncl . 2 3 P J D ist ri bu ti on L o sses )

2 4 ,1 % 2 7 1 ,8 P J S o u r c e : IS I , K a r lsr u h e

Figure II.5-2

How to identify the driving forces? Empirical observations looking at the energy flow

52

II.5.1

Private Households

Heating, warm water, electric appliances Heating and cooling • Heated floor area ( if not available: number of households ) • Difference between indoor and outdoor temperature (degree days: medium tem-

perature difference against 16°C (heating) or against 25°C (cooling) of a day ) • Technology: insulation of the building, type of heat generation, control techniques

for heating and cooling, heat distribution, heat recovery • Behaviour of building users: ventilation, overheating or-cooling, management of

control techniques driven by income, values, traditions Warm water generation and use • Number of persons in a household; • Technology: type of warm water generation, losses of distribution, • Behaviour: frequency and duration of shower, income, values, traditions

B e v ö lk e ru n g s p ro g n o s e n fü r d i e S c h w e i z 2 0 0 0 b is 2 0 3 5 8'500'000

8 .3 M i o . 7 .6 M i o . T re n d (n e u )

7 .2 M i o . 7'500'000

7 .4 M i o . T re n d (a l t )

6 .8 M i o . 6'500'000

2000

2010

2020

2030

Quelle: BFS 2004, Referenz-Szenario der Perspektiven = mittleres Bevölkerungs-Szenario

Figure II.5-3

Pre-Scenario demographic and net migration development

Electric appliances

53

Electric appliances • number of households; number of persons per household − for almost all electric appliances • Income per household, determining the market penetration of many electric appli-

ances (e.g. dryers, washing and coffee machines, PCs) • Technology: efficient or less efficient electric appliances (EU labels: A to F level,

A++) large standby losses • Behaviour of users: all / no equipment running ( e.g. TV, illumination, etc) − driven by convenience, income, values, traditions − not controlled due to "invisible billing" of electricity use

Methodology • Dynamics of the existing stock : cohort modelling with specific electricity demand

and yearly operation hours

45 40 35 30 25 20 15 10 5

Heating (El) Hot Water (El) Cooking (El) Cooling Washing Light Home Tec Other In PJ/Year

0

Prognos 2005

2000 2005 2010 2015 2020 2025 2030 Figure II.5-4

Households: electricity demand in “Perspektiven“

54

Wirtschaftswachstum 2035 Bevölkerung 2035 800 CHF/cap*a Bevölkerung 8,267 Mio. Bevölkerung 7, Mio.

Seco Ref + 0,5%/a (836 CHF/cap)

557 Mrd.

572 Seco Ref (528 CHF/cap)

Bevölkerung 6,780 Mio.

557 Mrd. 480 Mrd.

400 CHF/cap*a

445 Mrd. Energieperspektiven Unsicherheitsbereiche durch alternative Entwicklungen

Figure II.5-5

II.5.1

Open development of population and income (GDP) until 2035

Service sector – trade, service, and agriculture (70% of GDP)

Drivers of energy demand • Net production, number of employed people, • Floor area to be heated and cooled (often data not available) • Degree of automation of offices, selling machines, public illumination (data not

available) • Number of tourists, students, patients, visitors (data often not available) • Technology: efficient or less efficient buildings, heat generation, cooling systems,

illumination, office automation • Decision making of building owners, of trade companies, of public institutions, of

farmers regarding investments (efficient, comfort, prestige) • Behaviour of users: all / no equipment running ( e.g. illumination, ventilation, cool-

ing, etc) − driven by convenience, income, values, traditions − often not controlled due to "invisible billing" of electricity use

55

Table II.5-1

Development of the energy relevant floor area of the service sector in Switzerland, Reference Scenario, high and low, 1990 to 2035

EBF in Mio. m²

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

Reference Scenario

125

134

140

147

155

162

169

175

179

183

Scenario"High"

125

134

140

147

159

172

185

196

207

217

Scenario "Low"

125

134

140

147

152

158

162

164

166

167

Quellen: Wüest+Partner, 2004; CEPE 2005

II.5.1

The industrial sectors – (30% of GDP)

Drivers of energy demand • Net production of industry, • production of energy intensive products (e.g. steel, cement, glass, bricks) (data

some times not available) • Degree of automation of industrial production (data not available) • Capacity load of production due to the business cycle or individual orders (data

often not available) • Technology: efficient or less production stock, heat generation, compressed air,

cooling systems, illumination, control technologies • Decision making of company owners, of banking system (loans) regarding invest-

ments (efficient, comfort, prestige) • Behaviour of plant managers: production planning, maintenance, controlling − driven by knowledge, priority setting, overload of daily work, convenience, motiva-

tion, incentives, traditions

Table II.5-2

Gross value added of the industrial and construction sector in Switzerland, 1990 to 2035 (in million CHF in prices of 1990)

1990

2003* 2005

2010* 2015

2020* 2025

2030* 2035

Reference

103.7

108.7

115.2

121.1

127.1

130.0

132.9 134.5

136.1

High Scen.

103.7

108.7

115.2

124.0

133.0

139.1

145.3 150.1

155.1

56

Low Scen.

103.7

108.7

115.2

120.5

125.9

128.1

130.3 131.2

132.1

In industrialised countries, the transport sectors are using more energy than the industrial sector

Drivers of energy demand • Number of cars, trucks, motorbikes, trains, busses, trams, airplanes • Household income, prices for gasoline, diesel, tram, busses, trains • Often used drivers:

personkm per passenger transport modes tonneskm per freight transport modes

• Capacity load of cars (1.1), trucks, busses, trains, trams, airplanes (data some-

times difficult to access) • Technology: efficient or less vehicle stock, traffic management, load management

of trucks • Decision making of vehicle owners, regarding investments (efficient, comfort,

prestige) • Behaviour of vehicle drivers: efficient / wasteful behaviour − driven by knowledge, time management, convenience, prestige, incentives, tradi-

tions

BIP(seco ref+0,5%) / BIP(seco ref): 15.8734%

20%

BIP(800) / BIP(seco): 15.9144%

20 30

20 23

20 16

20 09

0%

BIP(400) / BIP(seco): -7.4271% -20% BIP(400) / BIP(seco)

Figure II.5-6

BIP(seco ref+0,5% p.a.) / BIP(seco ref)

BIP(800) / BIP(seco)

Pre-Scenario „economic development“ (seco Reference) 2000 to 2035 (including structural change)

57

production Bill. t / year maximum of production 2015 to 2030

still increasing demand trends at stagnating production?

Figure II.5-7

Pre-Scenario oil reserves and depletion mid point

Table II.5-3

Pre-Scenario oil prices (fob) 2035 in $ per barrel

base price/ max. production year/ price increase

oil price (fob)

High:

35 $ / 2015 / 2,5 %/a

58

Quite high:

35 $ / 2020 / 2,5 %/a

51

Medium:

35 $ / 2020 / 2,2 %/a

49

A bit low:

30 $ / 2020 / 2,0 %/a

41

Low:

30 $ / 2025 / 2,0 %/a

37

58

• 12.5 Bill. tonnes CO2 per year emitted by OECD-countries • 1 ppm per year as acceptable increase of concentration to limit the increase of temperature below 2°C per century Target achievable: OECD countries presently need 2.2 atmospheres; - the rest of mankind soon needs additional two

Figure II.5-8

Pre-Scenario International target setting of greenhouse gas emissions

59

Table II.5-4

Price development of heating oil EL – Reference Scenario CH

2003 2005 2010 2015 2020 2025 2030 2035 Rohöl FOB US$/Barrel Rohöl FOB CHF/1000 ltr. Rohöl CIF CHF/1000 ltr.

29.2 248 268

30.0 255 275

30.0 255 275

30.0 255 275

30.0 255 275

30.0 255 275

30.0 255 275

33.4 294 314

Netto-Großhändlerpreis CHF/1000 ltr. excise tax CHF/1000 ltr. emergency tax CHF/1000 ltr. CO2-Tax (35 CHF/t CO2) CHF/1000 ltr. Brutto-Großhändlerpreis CHF/1000 ltr.

352 3.55 6.16

359 3.55 4.27

362

367

359 3.55 4.27 95 462

358 3.55 4.27 95 461

357 3.55 4.27 95 460

356 3.55 4.27 95 459

355 3.55 4.27 95 458

394 3.55 4.27 95 497

Netto-priv. HH-Preis CHF/1000 ltr. excise tax CHF/1000 ltr. emergency tax CHF/1000 ltr. CO2-Tax (35 CHF/t CO2) CHF/1000 ltr. Zwischensumme MWSt (7,6/9,1(2010)/10,1(2015)/11(2020) Brutto-priv. HH-Preis CHF/1000 ltr.

408 9 6.16

413 9 4.27

423 32 449

426 32 454

508 9 4.27 95 616 47 563

507 9 4.27 95 615 47 562

506 9 4.27 95 614 47 561

505 9 4.27 95 613 47 560

504 9 4.27 95 612 47 559

543 9 4.27 95 651 49 602

Table II.5-5

Price development of natural gas – Scenario High, Switzerland

Import Rp/kWh (Untere Variante)

2003 2005 2010 2015 2020 2025 2035 1.6 1.9 1.9 1.9 2.2 2.5 3.2

Industrie [Rp/kWh] Einkauf** excise tax [Rp/kWh]*** emergency tax [Rp/kWh]*** CO2-Tax (35 CHF/t CO2) [Rp/kWh] Industrie [Rp/kWh] Verkauf**

3.68 3.98 3.98 0.0146 0.0146 0.0146 0.0200 0.0200 0.0200 0.693 3.72 4.01 4.71

3.98 4.28 4.58 5.28 0.0146 0.0146 0.0146 0.0146 0.0200 0.0200 0.0200 0.0200 0.693 0.693 0.693 0.693 4.71 5.01 5.31 6.01

private Haushalte Netto excise tax [Rp/kWh]*** emergency tax [Rp/kWh]*** CO2-Tax (35 CHF/t CO2) [Rp/kWh] Zwischensumme MWSt (7,6/9,1(2010)/10,1(2015)/11(2020) private Haushalte Brutto (Rp/kWh)

6.03 6.33 6.33 0.0146 0.0146 0.0146 0.0200 0.0200 0.0200 0.693 6.07 6.36 7.06 0.46 0.48 0.54 6.49 6.81 6.87

6.33 6.63 6.93 7.63 0.0146 0.0146 0.0146 0.0146 0.0200 0.0200 0.0200 0.0200 0.693 0.693 0.693 0.693 7.06 7.36 7.66 8.36 0.54 0.56 0.58 0.64 6.87 7.19 7.51 8.27

Table II.5-6

Impact of project climate change on electricity demand in the final energy sectors, in 2035, Reference Scenario

60

GWh / a private Haushalte Dienstleistungssektoren und Landwirtschaft Industrie und Baugewerbe Transport

Referenz

zusätzlicher

eingesparte

Netto-

ohne Klimaveränderung

Kühlbedarf

Raumwärme

Effekte

20'722

3'055

355

16%

20'660

2'000

k. A..

10%

20'672 2'833

165 k. A.

k. A.

1% k. A..

Conclusions on energy determining drivers • Physical drivers – nice to have: − floor area, number of households, number and age of electric appliances, number

and capacities of boilers, air conditioners • Economic boundary conditions important − income of private households, energy prices and expectations • Technologies and their efficiencies: influencial, but often not data • Decision making of investors and behaviour of users extremely influencial (prefer-

ences, traditions, convenience, prestige) (no data available in most cases) • Aggregated indicators as drivers as an often used solution e.g. personkm, net

value added, floor area of office buildings • the other solution for projections: specific energy use data

Kosten der Produktion von Energie und Verteilung Kostendegression von Energietechnologien Technologie-Wettbewerb

61

Boundary Conditions – Data from the Database Energy-efficient Boundary Conditions

Macro-model M. Wickart (MW)

Modified Input, etc.

Transformation module E. Jochem (EJ)

Energy sectors Household & Electrical appliances G.

Services G. Catenazzi

Cost module M. Wickart

Catenazzi (GC)

Industry

Transportation

E. Jochem

F. Noembrini (FN) Primary Energy

Conversion Sectors etc. Conversion

Conversion F. Noembrini F. Noembrini

Figure 0-1

Co-generation

Co-generation F. Noembrini F. Noembrini

Emissions

Energy Navigator Switzerland

What economic drivers are influencial on energy demand & structures ? • Income of private & public households, capital availability • Cost (marginal or additional cost) of highly efficient energy using equipment and

vehicles (e.g. insulation of buildings, efficient products) • Cost of energy transformation and distribution − fossil fuel based electricity generation − renewables and nuclear power − high, medium and low voltage • Can they be influenced by political or innovative measures?

Methods of foresight of technology and their costs • Patent and bibliometric analyses for research and development phase • Potential cost analysis via expert interviews und Delphi method or technological

analysis (e.g. carbon capture and storage) • Marginal cost of additional measures for efficient energy use or energy substitu-

tion (e.g. insulation of houses, efficient vehicles) • Experience curve for cost reduction by learning and economies of scale and

scope (e.g. wind power, ethanol, gas turbines)

62

A k t ivit ät sn iveau

6 En t d eck ung

Breit e A k t ivit ät en / M ö g lich k eit en

5 3

2 1

Eu p h o r ie

Figure 0-2

Toyota

4

Ern ü ch - Neu t er u n g o r ien t . A u f st ieg

Dif f u sio n Zeit

Model of the technology cycle (scheme)

GM /Opel

Volvo Nissan

Daihatsu

New technologies: always quite costly

Renault

Ford

Fiat

M azda

PSA

EvoBus Isrisbus

Hyundai

DC

M itsubishi

BM W VW Honda Nuvera UTC

PlugPower

Delphi

Ballard

Celanese

Co-operation / stock sharing several stacks delivered Delivery contracts

Figure 0-3

Fuel cell manufacturers and users (car-industry – examples) as result of a patent- and co-operation analysis

63

geringe Verschattung Little shadowing

Teilw . PassivhausFensterqulität (g=0.5)

CHF/kWh 0.70 NE

höhere Verschattung High shadowing

0.60 Lüftungsanlage

0.50

Wärmedämmung Steildach

0.40 Fensterflächenvergrösserung Süd

0.30 Fensterglas von 0.7 auf 0.5

0.20 0.10

Present heat cost Vergrösserung Fensterfläche, U: 1.1->0.7

300 MJ/m2a

250

Figure 0-4

200

150

100

50

0.00 0

Gross marginal cost of Swiss one-family houses with little and high shadowed windows Cumulative ethanol volume (1000m3)

1

10

100

1000

10000

100000

1000000

100000

1000 1980

1985

Ethanol (1980-1985) PR = 93%

1981

1990

2002 2000 Ethanol (1985-2002) PR = 71%

1985

10000

PV (1981-2000) PR = 77%

1990

100

2000 1985

1981

1990 10

Wind (1981-1985) PR = 99%

1000

1995 Wind (1985-2000) PR= 88%

2000

1989

1981 1995 CCGT (1981-1989) PR = 104%

CCGT (1989-1995) PR = 81%

100 1

10

100

1000

10000

100000

1 1000000

Cumulative Installed Capacity in MW (PV, Wind, Gas Turbines)

Figure 0-5

Experience curves of several energy converters

Learning Curves – an overview

Unit cost reduction as a function of cumulative production or installed capacity: • Progress ratio (pr), learning rate (lr = 1–pr) • Estimates sensitive to model specification and estimation technique (e.g. Söder-

holm/Sundqvist 2004) • Many empirical LC studies on RETs (e.g. Neij 1997/99; Ibenholt 2002; Kamp et al.

2004)

64

C (C U M 1 ) − C (C U M 2 ) = 1 − 2b = 1 − PR C (C U M 1 ) II.6.

Energiepreise – Kosten, Steuern, Abgaben

Stand heute – Preisfluktuationen Projektionen von Energiepreisen

MARKAL MARKAL Europe global

Bisher nur für Energiewandler:

Advanced coal

0.94

Reduced MARKAL global

ERIS global

0.93

0.95 0.88

Gas combined cycle

0.89

0.85

New nuclear

0.96

0.93

Fuel cell

0.82

0.87

Wind power

0.90

0.89

0.85

0.88

Solar pv

0.81

0.81

0.72

0.85

Solar thermal

0.82

0.85 Quelle: Seebregts et al, 1999

neu

Zweifach-Isolierverglasung 1970-2000

0.85 – 0.9

Dreifach-Isolierverglasung ca Mitte 1990er

0.85 – 0.9

Quelle: Erhebungen und Berechungen CEPE

Figure II.6-1

Kostendegression durch Lern- und Skaleneffekte

65

Erzeugungskosten [Cent/kWh]

14,00 12,00

3800 h

10,00

2100 h

Kapitalkosten (2000h) Kapitalkosten (5000h) Kapitalkosten (7000h) Brennstoff + O&M Kosten

8,00 6,00

assumptions: - 20 years depreciation - 8 % interest rate -15,5 – 16 €/MWh gas price - 5,7 €/MWh coal price

4,00 2,00

Figure II.6-2

e gi

le Ke

rn

en

er

nk oh

Br au

nk St ei

G

as

oh

G

le

T

uD G as G

in d W

W

in d

on

of fs

sh

ho

or

e

re

0,00

Electricity generation cost – present data, wind, fossil, nuclear

Erzeugungskosten [Cent/kWh]

14,00 12,00 10,00

Kapitalkosten (2000h) Kapitalkosten (5000h) Kapitalkosten (7000h) CO2-Kosten (30€/t) erhöhte Brennstoffkosten Brennstoff + O&M Kosten

8,00 6,00 4,00 2,00

Figure II.6-3

e gi

le Ke

rn

en

er

oh nk

Br

au

oh le nk ei

G

as

G

T

uD G as G

St

in W

W

in

d

d

of

on

fs

sh

ho

or

e

re

0,00

assumptions: - 20 years depreciation - 8 % interest rate - 19 – 20 €/MWh gas price - 5,7 €/MWh coal price

Power generation cost – fossil fuels (high gas price), coal, and nuclear

Critical hints in using costs of energy generation and efficiency investments • New technologies: mostly high investment cost − what is there cost reducing potential ? − what is the cost reducing potential of the technical alternative ? • Relatively high fuel cost today: − - what are the perspectives of the fuel? How are the relative risks? • What are the co-benefits in case of efficiency investments? • What are the external cost and the system costs of energy conversion plants?

Intermittent power generation !

66

70 60

Entdeckung Spindletop Texas

Pennsylvanischer Öl ‚Boom‘

50

Sumatra Produktion beginnt

40 30 20

Unterbruch Iranischer Lieferungen

Produktion in Vennezuela wächst

Revolution in Iran

Suez Krise

Angst vor NachkriegsKnappheit wiederaufbau in USA Entdeckung in Ost-Texas

Beginn Russischer Ölexporte

Yom Kipur OPEC führt neues Preissystem und, später, Quotenregelung ein

10 1861 1870

1890

1910

1930

1950

1970

1990

Figure II.6-4

Preis des Erdöls (in konst. [1992] US $ pro barrel [159 l ])

Table II.6-1

Preisentwicklung Heizöl Extra Leicht – Referenzszenario 2003 2005 2010 2015 2020 2025 2030 2035

Rohöl FOB US$/Barrel Rohöl FOB CHF/1000 ltr. Rohöl CIF CHF/1000 ltr.

29.2 248 268

30.0 255 275

30.0 255 275

30.0 255 275

30.0 255 275

30.0 255 275

30.0 255 275

33.4 294 314

Netto-Großhändlerpreis CHF/1000 ltr. excise tax CHF/1000 ltr. emergency tax CHF/1000 ltr. CO2-Tax (35 CHF/t CO2) CHF/1000 ltr. Brutto-Großhändlerpreis CHF/1000 ltr.

352 3.55 6.16

359 3.55 4.27

362

367

359 3.55 4.27 95 462

358 3.55 4.27 95 461

357 3.55 4.27 95 460

356 3.55 4.27 95 459

355 3.55 4.27 95 458

394 3.55 4.27 95 497

Netto-priv. HH-Preis CHF/1000 ltr. excise tax CHF/1000 ltr. emergency tax CHF/1000 ltr. CO2-Tax (35 CHF/t CO2) CHF/1000 ltr. Zwischensumme MWSt (7,6/9,1(2010)/10,1(2015)/11(2020) Brutto-priv. HH-Preis CHF/1000 ltr.

408 9 6.16

413 9 4.27

423 32 449

426 32 454

508 9 4.27 95 616 47 563

507 9 4.27 95 615 47 562

506 9 4.27 95 614 47 561

505 9 4.27 95 613 47 560

504 9 4.27 95 612 47 559

543 9 4.27 95 651 49 602

67

Table II.6-2

Preisentwicklung Erdgas – Szenario Hoch 2003 1.6

2005 1.9

2010 1.9

2015 1.9

2020 2.2

2025 2.5

2035 3.2

Industrie [Rp/kWh] Einkauf** excise tax [Rp/kWh]*** emergency tax [Rp/kWh]*** CO2-Tax (35 CHF/t CO2) [Rp/kWh] Industrie [Rp/kWh] Verkauf**

3.68 0.0146 0.0200

3.98 0.0146 0.0200

3.72

4.01

3.98 0.0146 0.0200 0.693 4.71

3.98 0.0146 0.0200 0.693 4.71

4.28 0.0146 0.0200 0.693 5.01

4.58 0.0146 0.0200 0.693 5.31

5.28 0.0146 0.0200 0.693 6.01

private Haushalte Netto excise tax [Rp/kWh]*** emergency tax [Rp/kWh]*** CO2-Tax (35 CHF/t CO2) [Rp/kWh] Zwischensumme MWSt (7,6/9,1(2010)/10,1(2015)/11(2020) private Haushalte Brutto (Rp/kWh)

6.03 0.0146 0.0200

6.33 0.0146 0.0200

6.07 0.46 6.49

6.36 0.48 6.81

6.33 0.0146 0.0200 0.693 7.06 0.54 6.87

6.33 0.0146 0.0200 0.693 7.06 0.54 6.87

6.63 0.0146 0.0200 0.693 7.36 0.56 7.19

6.93 0.0146 0.0200 0.693 7.66 0.58 7.51

7.63 0.0146 0.0200 0.693 8.36 0.64 8.27

Import Rp/kWh (Untere Variante)

Vorlesung am 18. Mai 2006 - Materialeffizienz und Energiebedarf - Energiepreise - Kosten, Steuern, Abgaben - Stand heute – Preisfluktuationen - Projektionen von Energiepreisen

- Externe Kosten und ihre Internalisierung - Beispiele, Bewertungsmethoden und ihre Internalisierung)

Material efficiency and energy demand – a forgotten relation • General information − average share of energy cost in industrial production cost: ……% − average share of labour cost in industrial production cost …….% − average share of material cost in industrial production cost …...% • fashions of entrepreneurial attention of investment on labour productivity? • Impact options of material efficiency on energy use: − lighter constructions, i.e. less material per utility, less energy demand per pro-

duced material and product, less energy use, if product is a moving or moved product

68

− − −

substitution of the material needed (bio-mass based materials) avoiding wastes and minor product quality by better process control recycling of materials, re-use, pooling (car sharing, tool renting)

The impact of material efficiency in energy demand Saved energy = spec. energy of production i x difference in material demand i + material demand j x difference in spec. energy of production + product use k x difference of specific energy of use + spec. energy of production l x difference of product demand l

Examples to the different steps of the above equation: • steel, aluminaum, cement, bricks, glass, i.e. energy-intensive materials, • substitution of energy-intensive materials by less energy-intensive ones − lighter cars, bottles to be shipped, i.e. Less transport energy − pooling (car sharing, renting of construction machines)

Total result on primary energy demand: 0.5% per year, 6 PJ/a in CH

Entwicklung vs. 1960 = 100*

Entwicklung von Produktivitäten im Verarbeitenden Gewerbe

Relevanz der Materialeffizienz in Analysen „ Kostenfaktor Personal überwiegt bei Effizienzanalysen und Optimierungsansätzen

400 350 300 250 200 150 100 50 0

Arbeitsproduktivität

Materialproduktivität Energieproduktivität 1960 1970 1980 1990 2000

*alte Bundesländer

Figure II.6-5

„ Kostenfaktor Material ist der größte Kostenblock im Verarbeitenden Gewerbe: 40 % der Bruttoproduktionskosten „ Hohes Potential Materialkostenoptimierung: Erfahrungen aus Beratungs- und Forschungsprojekten zeigen, dass im Kostenblock Materialkosten erhebliche Effizienzund Steigerungsmöglichkeiten der Produktivität realisiert werden können

Different speeds of productivity gains – result of fashions or opportunities?

69

Nr.

Branche

Materialeinsatz in Mrd € in 2002

Materialeinsparpotenzial in Mrd. €/a

1

Herstellung von Metallerzeugnissen

18,6

0,8 – 1,5

2

Herstellung von Kunststoffwaren

10,8

1,0 – 2,0

3

Herstellung von Geräten der Elektrizitätserzeugung, verteilung

10,2

1,5 – 3,0

4

Chemische Industrie

11,1

1,8 – 3,4

5

Baugewerbe: Hochbau und Ausbaugewerbe

11,1

0,2 – 1,2

61,8

5,3 – 11,1

(ohne Grundstoffindustrie)

Gesamt (autonomes u. induziertes Potential)

in terms of energy: Figure II.6-6

2,3 bill. €

200 – 415 Mill. €

Potentials of material efficiency: around 11 bill. Euro/a for five branches of the German industry, 6 bill./a by additional policies

Determinants of energy prices for final consumers Energy prices are dependent on: • Production cost of the primary energy (crude oil, gas, coal) plus royalties and

taxes, domestic transport: = fob (free on board) price • Transportation cost plus import taxes: cif price • Conversion cost (refineries, power stations, district heat generation) • Transportation and distribution cost, plus taxes, surcharges to whole sale (e.g. jet

fuel, natural gas, propane, gasoline, electricity 16 kV) • Final distribution cost plus value added tax for private households (e.g. heating oil,

electricity 220 V, wood pellets, district heat)

70

Erzeugungskosten [Cent/kWh

14,00

without external effects (air pollution, noise, climate change)

12,00 10,00

Kapitalkosten (2000h) Kapitalkosten (5000h) Kapitalkosten (7000h) CO2-Kosten (30€/t) erhöhte Brennstoffkosten Brennstoff + O&M Kosten

8,00 6,00 4,00 2,00

Figure II.6-7

e gi

le

er en rn

Ke

nk

oh

le au

oh

Br

nk ei St

G

as

G

T

uD G as G

in W

W

in

d

d

of

on

fs

sh

ho

or

re

e

0,00

assumptions: - 20 years depreciation - 8 % interest rate - 19 – 20 €/MWh gas price - 5,7 €/MWh coal price

Power generating cost – fossil fuels (high gas price), coal, and nuclear

What are external effects? And how large are they? • local pollution from economic activities (production, consumption), • unintentional side-effects effecting a third party (or nature) either positively (exter-

nal benefit) or negatively (external cost) • not included in the cost or price of the produced or consumed product or service

Examples: • from energy use: increase of respiratory illness, climate change: additional air

conditioning, more intensive storms • high energy-efficient buildings: increase of local employment, less energy imports,

better balance of trade • Individual change from road to public transportation

71

no

Exclusivity

yes

Table II.6-3

Private and public goods classification

Divisibility (rivalness in consumption) yes (rivalrous) no (nondepletable) pure private goods: e.g. natural monopol: e.g. electricity, bread, shoes, coded television, patented houses knowledge, "italian" roadways common property or open pure public goods: clean air, scenic views, access resources, knowledge, national "Allmende" goods: e.g. ground water resources, defense, public lighting, natural environment roadways, avalanche protection

Def.: social cost = private cost + external cost Electricity price

Market price without CO2car ge

*) corrosion of cars, fences, bridges; loss of agricultural production; respiratory illness (4 bill. CHF/a)

Figure II.6-8

S1 = marginal social costs of generation

External cost 0.1 to 2 cts/kWh *)

S = Supply curve marginal private costs of generation

Electricity demand curve

Quantity of electricity produced by fossil fuel based power plants without CO2-emission certificates

72

• Austrocknung der Flächen ehemaliger Waldgebiete • Veränderte Niederschläge z.B. Im Amazonasgebiet

Vorträge/REN-Vorarlsberg.ppt

• Rückzug von Oberflächengewässern und Dürren

Figure II.6-9

House boat in an neighbouring river of the Amazonas

Folie 16

Social cost of deforestation and consequently dring out of rivers

Vorträge/REN Vorarlsberg.ppt

Entwaldung und Kahlschlag • Brasilien, Indonesien, China, Indien, Nigeria, Kanada für - Holzgewinnung - landwirtschaftliche Flächen - Soja für Fleisch in die OECD • z.B. Amazonien 10.000 bis 15.000 km2 pro Jahr Folie 17

• globale CO2-Bilanz: zusätzliche Belastung der Atmosphäre

Figure II.6-10

Social cost by deforestation or highly intensive use of agricultural land

73

Figure II.6-11

Figure II.6-12

Dürre in Indien, Sommer 2002

74

Figure II.6-13

Figure II.6-14

Definition.: social cost = private cost + external cost ? • External Effects • − −

Impacts on society and individuals often not identified knowledge in social sciences less developed (complexity) impacts are third/fourth order effects (other influences)

75



influences by stakeholders and media



Uncertainties of impacts in complex systems (observation process)



Unidentified effects cannot be managed at all

76

III. Energiewirtschaftliche Analysen und Projektionen III.1.

Scenario design and quantitative modelling of boundary conditions



population, economic growth, structural changes, technologies, energy prices, climate change



pre-scenarios, configuration by consistency and plausibility

• Methods of expert estimations (Delphi, interviews, educated guesses) • Methods of modelling energy demand and supply systems (simulation, optimisa-

tion) by process-oriented models

III.1.1 Objectives and methodological approach of energy demand and supply projections

Objectives • Identify upper and lower limits of possible developments of energy demand of a

country within the next three decades • Analyse the risks and benefits of over and under investments in energy supply

Learning methodological approaches

• Identify major drivers, e. g. population, economic growth, energy prices • Development of derived drivers, living area, car density, office area, demand of

steel, cement, paper, industrial production • Anticipated changes in technology use, incl. specific electricity demand (efficiency,

automation, substitution), specific heat demand • Variations of scenarios and sensitivity analyses

77

The task: Projecting the Energy-Flow of Switzerland 2002 into the future

Nutzenergie der Endenergiesektoren PJ

Energy Services

Nutzungsgrad in %

Space Heat

225

Process Heat

82,0

55,6

Motive Powert

55,7

20,0

Other Drives

52,8

60,6

Illuminated Areas (in qm)

Illumination

21

8,5

PC-, Phone- and Internet Use

Information, Communication

Heated Rooms 2

76,4

(in qm)

Industrial Products (in tons) Mobility (in Pass.km) Automation, Cooling

n.d.

21,3 PJ non-energetic Consumption Plastics, Asphalt

n.d.

Industry Transportation

168,5 PJ 302,8 PJ

Private Households

230,6 PJ

Trade, Commerce,

153,5 PJ

Primary energy 1.147 PJ

Final Energy 853,7 PJ

Transformation Losses

Losses for generating Useful Energy

Useful Energy

(Incl. 23 PJ Distribution Losses)

38,1%

37,8 %

24,1%

429 PJ

425 PJ

271,8 PJ Source: ISI, Karlsruhe

K:\E\Daba-al\Energieflussdiagramme\2002_en-Energiefluss Schweiz\2002Energiefluss Folie.ppt

Figure III.1-1

The first step: - From prescenarios to - full consistant, plausible scenarios

Energy-Flow of Switzerland 2002

Boundary Conditions – Data from the Database Energy-efficient Boundary Conditions

Macro-model M. Wickart (MW)

Transformation module

Modified Input, etc.

E. Jochem (EJ)

Energy sectors Household & Electrical appliances G.

Services G. Catenazzi

Cost module M. Wickart

Catenazzi (GC)

Industry

Transportation

E. Jochem

F. Noembrini (FN) Primary Energy

Conversion Sectors etc. Conversion

Conversion F. Noembrini F. Noembrini

Figure III.1-2

Co-generation

Co-generation F. Noembrini F. Noembrini

Emissions

Energy Navigator Switzerland defining the boundary conditions

78

Questions of the OFE (Bundesamt für Energie) – How does the Swiss energy system evolve during the next 30 years?

• What are the major drivers for more or less energy demand in the various sectors

of final energy and energy conversion? • Can they be influenced by political or innovative measures and activities? • How material demand can be reduced? And how the demand of useful energy of

buildings, vehicles, industrial processes? • How can efficiencies of energy conversion be improved? • How much does it cost compared to do no specific activities?

B e vö lk e ru n g s p ro g n o s e n fü r d i e S c h w e i z 2 0 0 0 b is 2 0 3 5 8'500'000

8 .3 M i o . 7 .6 M i o . T re n d (n e u )

7 .2 M i o . 7'500'000

7 .4 M i o . T re n d (a lt )

6 .8 M i o . 6'500'000

2000

2010

2020

2030

Quelle: BFS 2004, Referenz-Szenario der Perspektiven = mittleres Bevölkerungs-Szenario

Figure III.1-3

Pre-scenarios of population 2000 to 2035

Table III.1-1

Present and projected development of private household size

Number of persons per private household – education, divorces, aging people

1970

3,02

Swiss data

1980

2,59



1990

2,38

1970 – 2000: -23%

2000

2,31 Referenz

tief

hoch

2005

2,23

2,23

2,23

2010

2,16

2,18

2,20

2015

2,13

2,14

2,17

79

2020

2,1

2,09

2,14

2025

2,06

2,04

2,11

2030

2,03

2,00

2,08

2035

2,02

1,95

2,05

Quelle: BFE 2004, CEPE 2005 (Schätzungen für hohe und tiefe Bevölkerungsentwicklung)

Determination of the development of new dwellings – example for stepping down from the boundary conditions to energy drivers Newdwelling0m = MFH,t = e^2.652208*(Ln(1000*GDPt-5) - Ln(1000*GDPt-6)) – 2.011428*(Ln(1000*GDPt-5) – Ln(1000*GDPt-6)) + 0.714005*Ln(AGE_25 t) – 0.967011*Ln(AGE75_85 t) + 0.346158*Ln(newdwelling1m=MFH, t-1) + 0.210489 * dwelinctiv t + 10.801886 for t=2002

As a function of GDP, population age structure, dwellings in cities, number of new dwellings of the last year • the computed result is not necessarily valid although the quality measures of the

statistics may suggest this; plausibility checks quite useful

20%

BIP(seco ref+0,5%) / BIP(seco ref): 15.8734%

High pre-scenario at 800 CHF/ cap . a

BIP(800) / BIP(seco): 15.9144%

Low pre-scenario at 400 CHF/ cap . a

20 30

20 23

20 16

20 09

0%

BIP(400) / BIP(seco): -7.4271%

-20% BIP(400) / BIP(seco)

Figure III.1-4

BIP(seco ref+0,5% p.a.) / BIP(seco ref)

BIP(800) / BIP(seco)

Percentage deviation of two alternative pre-scenarios "high" and "low" relative to trend development (seco Reference = zero % line) 2000 to 2035

80

Table III.1-2

Gross domestic product per capita and year, Switzerland past and future 1970-2003 and 2000-2020; quite optimistic by plausibility check

GDP (Billion CHF, 1990)

GDP / cap (CHF)

population (Mio.)

Per capita growth of GDP

1970

225.9

36'039

6.27

(CHF / capita / year)

1975

237.2

37'069

6.40

1980

259.0

40'564

6.39

452

1970 – 1980

1985

277.7

42'506

6.53

549

1975 – 1985

1990

317.3

46'690

6.80

612

1980 – 1990

1995

316.1

44'647

7.08

214

1985 – 1995

2000

346.0

48'061

7.20

127

1990 – 2000

2005

367.6

49'609

7.41

516

1995 – 2005

2010

397.5

53'142

7.48

508

2000 – 2010

2015

422.0

56'117

7.52

650

2005 – 2015

2020

441.5

58'554

7.54

243

2010 – 2020

Sources: BFE 2003, BFS several years, own assumptions

Table III.1-3

Gross value added in three pre-scenarios for the Swiss industry 2000 to 2035 (in Bill. CHF1990)

2000 2003* 2005 2010* 2015 2020* 2025 2030* 2035 Schweiz total 367 370 389 417 445 452 480 494 508 Industrietotal 108 109 115 121 127 130 133 134 136 Dienstleistung + Landwirtschaft 259 261 274 296 318 332 347 360 372 Schweiz total, hoch Industrietotal Dienstleistung + Landwirtschaft Schweiz total, tief Industrietotal Dienstleistung + Landwirtschaft

389

417

452

481

518

556

589

379

392

409

422

440

458

470

• check the development of the share of the service sector – a stable trend? • check the structural change within industry – which differs in industrial and emerg-

ing counties

81

Economic situation 2035 Population 2035 800 CHF/cap*a Bevölkerung 8,267 Mio. Bevölkerung 7, Mio.

Seco Ref + 0,5%/a (836 CHF/cap)

557 bill.

572 Seco Ref (528 CHF/cap)

Bevölkerung 6,780 Mio.

557 Mrd. 480 Mrd.

400 CHF/cap*a

445 bill. Covered by Energieperspektiven alternative developments Figure III.1-5

What pre-scenario of population matches what pre-scenario of economic development?

Energie-Bezugs-Fläche (EBF) Mio. m²

700 600 500 400 300 200 100 0

1990 2000 2003 2005 2010 2015 2020 2025 2030 2035

EBF (Trend)

349

416

432

444

472

498

522

542

561

577

EBF (hoch)

349

416

432

438

466

491

518

546

574

600

EBF (tief)

349

416

432

440

463

483

501

519

535

548

EBF (Trend, dauernd bewohnt bzw. Erstwohnungen)

316

374

389

399

425

444

459

474

488

496

Figure III.1-6

Energy driver: heated floor area in Swiss private households, 1990 to 2035, three alternative developments

Quelle: BFE 2004 (Trend); eigene Berechnungen für Hoch und Tief-Szenario

82

1000 VZÄ

3'000

2'500

2'000

1'500

2005

2010

2015

2020

2025

2030

2035

DL, Trend

2'202

2'287

2'330

2'340

2'314

2'275

2'265

DL, positive Dynamik

2'202

2'357

2'474

2'556

2'599

2'626

2'684

DL, negative Dynamik 2'202

2'252

2'260

2'235

2'175

2'105

2'061

Figure III.1-7

From GDP to working people in the service sector and in agriculture 2005-2035 in three scenarios, the interim step to the floor area

Ene r gie- B ez ug s -Fläc he ( EBF) Mio. m²

80 70 60 50 40 30 20 10 0

19 90

19 95

20 0 0

2 005

2 010

201 5

20 20

20 25

2 030

2 035

18 .3

19.9

21.0

22 .1

23 .3

24.5

25.5

26.3

26 .9

27 .4

6.7

7.3

7.3

7.2

7 .3

7.5

7.6

7.6

7.7

7 .6

Hotels u nd Ga s ts tätten

11 .4

11.6

11.6

11 .8

12 .1

12.5

12.9

13.2

13 .5

13 .7

B ildu ng

22 .6

23.3

24.1

25 .0

26 .3

27.5

28.5

29.3

30 .0

30 .6

Ges u ndhe its - und S oz ialw e s en

14 .8

15.6

16.5

17 .7

18 .9

20.0

21.0

21.8

22 .5

23 .1

A nde re Dien s tleis tung en

45 .2

50.1

53.0

56 .5

60 .1

63.8

67.0

69.7

72 .0

74 .1

6.1

6.3

6.4

6.4

6 .5

6.6

6.7

6.8

6.9

6 .9

Hande l B anken und V erf s ic her ung e n

Lan dw ir ts c haf t

Figure III.1-8

The energy driver: heated floor area of the service sectors and agriculture Switzerland, 1990 to 2000 and Reference-Scenario 2000 to 2035

Quellen: Wüest+Partner, 2004; CEPE 2005

Table III.1-4

Gross value added in the branches of Swiss industry and construction 1990 to 2000 and Reference Scenario (in Mio. CHF1990)

Wertschöpfung in den Industriebranchen Nahrung Bekleidung

1990 1995 2000 2005 2015 2025 2035 7'400 8'266 8'265 8'512 8'212 7'714 6'974 2'847 2'222 1'687 1'729 1'979 2'097 2'117

83

Papierindustrie Chemie Glas Keramik Zement NE-Mineralien Metalle NE-Metalle Metallerzeugnisse Maschinenbau Elektrotechnik Energie Bau Übrige Industrie total

1'393 1'521 5'614 9'335 535 450 535 450 161 135 1'445 1'214 1'030 1'024 515 512 7'570 7'525 13'021 11'930 13'621 14'749 7'463 9'728 26'797 24'063 13'762 12'930 103'710 106'052

1'607 1'632 1'750 12'750 14'680 16'727 417 422 450 417 422 450 125 127 135 1'126 1'139 1'214 1'065 1'126 1'217 533 563 609 7'701 8'175 8'841 12'820 13'771 15'755 15'384 16'719 18'967 8'981 9'381 9'894 21'285 22'013 24'389 13'881 14'743 16'528 108'043 115'153 127'115

1'776 1'747 18'609 21'184 454 447 454 447 136 134 1'226 1'208 1'236 1'208 618 604 8'974 8'774 16'699 17'067 20'064 20'473 10'000 9'868 25'440 26'061 17'379 17'751 132'875 136'066

Technological trends as energy drivers for fuels and electricity • More electronics and informatics, additional automation in all sectors

+/-

• Microsystemstechnics (producing individually and without losses )

+/-

• "cool" physico-chemical processes (e. g. membranes, biotechnology,

extraction, absorption, impulse drying, ….)

- fuels / + electricity

• New plastics with better properties or made out of biomass

-

• "Robotics" in all service branches and private households

+

• More technical equipment in private households and leisure

+

84

Figure III.1-9

Scenario la of the Perspektiven – electricity demand by sectors

Table III.1-5

Comparison of the projected electricity demand of the final energy sectors of three scenarios for 2035, Switzerland

Referenz I Perspektiven

"Hoch"Szenario

"Tief" Szenario

Hoch/Ref

Tief/Ref

private Haushalte

20'722

22'126

19'259

6.8%

-7%

Industrie und Baugewerbe

20'662

23'555

19'112

14%

-7.5%

Dienstleitungssektoren

17'371

20'320

15'770

17%

-9.2%

Transport

2'833

3'050

2'750

7.6%

-3.0%

Endenergie, total (gerundet)

61'590

69'050

56'890

12%

-7.6%

GWh / a

• the highest deviations from the Reference Scenario in industry and the service

sector • an additional increase of electricity demand is expected by increasing tempera-

tures due to climate change • transport plays a minor role in electricity use, even less in the future

Interim conclusions making energy demand projections • Development of population uncertain due to net immigration within three decades

(range of error: + 7 to -10 % relative to Reference) • Economic development uncertain due to many domestic and foreign influences

(range of error: + 10 to -10 % relative to Reference)

85

• Recommended scenario design: Reference and two explorative options, then tar-

get-oriented scenarios (policy-induced changes) • Vales, priorities, traditions, behaviour substantially determining drivers and tech-

nological changes • Transport and private households: major drivers of final energy demand • Uncertainties demand for permanent reflection about the future

Methods of technology and cost foresight • Patent and bibliometric analyses for the research and development periods • Analyses of technological potentials by means of expert interviews and Delphi

method or technological analyses • Trend extrapolation (statistically and by econometrics) • Historical analogy in cases for technological forerunners in other countries • Analysis of marginal (or additional) cost of additional measures of energy effi-

ciency or of energy substitution • Experience curve method for projecting future cost and cost redactions by learning

and economies of scale and scope

The statement to be located in the time periods

Figure III.1-10

Example of a written questionnaire of the delphi method applied to renewables

Never to be realised

Time period of realisation

86

Toyota

GM/Opel

Volvo Nissan

Daihatsu

Renault

Ford

Fiat

Mazda

PSA

EvoBus Isrisbus

Hyundai

DC

Mitsubishi

BMW VW Honda Nuvera UTC

PlugPower

Delphi

Ballard

Celanese

cooperation / joint venture single stacks delivered Source: Fh-ISI

Figure III.1-11

firm contracts of delivery

Fuel cell manufacturer and user industries (car manufacturer – examples) as a result of a patent and co-operation analysis

87

A kt ivit ät sn iveau

6 Ent d eckung

Breit e A kt ivit ät en / M ö g lich keit en

5 3

2 1

Eu ph orie

Figure III.1-12

4

Ern üch- Neu t erun g orient . A uf st ieg

Dif f u sio n Zeit

Concept of technology cycle (scheme of development)

geringe Verschattung

Teilw . PassivhausFensterqulität (g=0.5)

CHF/kWh 0.70 NE

höhere Verschattung

0.60 Lüftungsanlage

0.50

Wärmedämmung Steildach

0.40 Fensterflächenvergrösserung Süd

0.30 Fensterglas von 0.7 auf 0.5

0.20 0.10

Vergrösserung Fensterfläche, U: 1.1->0.7

300 MJ/m2a

Figure III.1-13

250

200

150

100

0.00 50

0

Gross marginal cost curve for one family houses at low and high shadowed areas with increasing measures of insulation and ventilation

88

Cumulative ethanol volume (1000m3) 1

10

100000

100

1000

10000

Photovoltaic panels

PV (1981-2000) PR = 77%

1000

1985

Ethanol (1980-1985) PR = 93%

1990

2002 2000 Ethanol (1985-2002) PR = 71%

1985

10000

1000000

Ethanol plants

1980

1981

100000

1990

100

2000 1985

1981 Wind (1981-1985) PR = 99%

1000

Wind converters

1990

Gas turbines 2000

1995

Wind (1985-2000) PR= 88%

1981 1995 CCGT (1981-1989) PR = 104%

CCGT (1989-1995) PR = 81%

100 1

10

100

10

1989

1000

10000

100000

1 1000000

Cumulative Installed Capacity in MW (PV, Wind, Gas Turbines)

Figure III.1-14

Experience curves of several energy converters

Hints and conclusions making energy projections • Explorative and conditioned kinds of projections (Scenarios) "Prognosis" in the

sense "What will be?" is impossible in social systems • Reference scenario needed for quantifying the additional cost of target-oriented

(policy driven) projections • Major technological influences: make them transparent and open to discussion • Possible development paths to be described by the documented relevant bound-

ary conditions • Do not forget in economic analyses to include the macro-economic perspective

(including external effects, partial models not sufficient for economic assessment) Hints for literature • Hensing, Pfaffenberger, Ströbele, 1998, Chapt. 11 (German) • Heinloth, 1998 (German) • Goldemberg et al. 2000, Chapt. 6 (English) • Special Issue of energy Economics , April 2006

89

Lecture June 8, 2006

Energy demand and supply projections and the limits of present energy models - macro-economic energy models, technological progress and complete causal relationships of an economy (top down models) - process-oriented energy models, technical detail, but partial causal relationships (bottom up models) - building the bridge by integration the two model types into one system by soft or hard links

Übersicht zur Vorlesung Energiewirtschaft und Energiepolitik Energiestatistik

Energieressourcen

- beschreibende - analytische - Datenquellen

- Reserven - Ressourcen

Energietechnik

Rationelle Energieanwendung

Wärmetechnik Elektrotechnik

- Effizienzpotentiale - Energiedienstleistungen

- Szenariotechnik - Modellierung

Figure III.1-15

- Maßnahmen und Bündel - EU und international Hemmnisse und Marktunvollkommenheiten - allgemeine Defizite - sektorale Hemmnisse

Bautechnik Energienachfrage

Energieperspektiven

Energiepolitik

- mikroökonomische Analysen I und II

Unternehmen und Märkte - Produktionskosten und Preise - Externe Kosten - Deregulierung der Märkte

today

Overview

III.1.1 Objectives of the top down models and the bottom up models

Objectives of top down (macro-economic) energy models • Simulate the drivers and the impacts of energy demand and supply of a country

within the next two or three decades, including energy price effects on all energy consumers • Major design assumption: the economy is in equilibrium, policy intervention leads

usually to higher societal cost that have to be identified and minimized

90

Objectives of bottom up models • Simulate the energy demand and supply of a country within the next two or three

decades in a technical detail appropriate to understand the technological changes of the energy system including their cost and emissions • Major design assumption: the energy system can change in its technological

structure without substantially effecting the economy

The usual situation:

Boundary Conditions – Data from the Database

-Macro modellers use "their" models - bottum up modellers use "theirs" - the results differ greatly

Boundary Conditions

Macro-model M. Wickart (MW)

Transformation module

Modified Input, etc.

E. Jochem (EJ)

Energy sectors Household & Electrical appliances G.

Services G. Catenazzi

Cost module M. Wickart

Catenazzi (GC)

Industry

Transportation

E. Jochem

F. Noembrini (FN) Primary Energy

Conversion Sectors etc.

Conversion

Conversion F. Noembrini F. Noembrini

Figure III.1-16

Co-generation

Co-generation F. Noembrini F. Noembrini

Emissions

Energy Navigator Switzerland defining the boundary conditions

Macro economic energy models and their characteristics • Models describe the whole domestic economy by either a general equilibrium

model or an econometric model: −

flow of goods, services, and capital as well as labour



prices of the goods, services, capital and labour



other input than capital and labour is energy



improvement of energy efficiency is simulated by fixed productivity increases over time and by energy price-induced technical change of large sectors; no new technical innovation occur (or cannot be made explicit)

• Policy measures are mainly restricted to price policies (influencing the price-

induced technological progress or energy substitution) • The advantage: the effects of changed energy demand and supply on capital, la-

bour, their prices, or economic growth can be evaluated

91

foreign consumers

foreign producers Market for goods and services

Natural environment

Natural environment

e.g. subsidies

Companies e.g. taxes

l sa ar ie s, g wa es

Figure III.1-17

Market for production inputs, e.g. labour, capital

e. g. lab ou r

g. e.

Natural resources

e.g. social security benefits Public authority Private at federal, Households regional and local level e.g. taxes

Money Goods

Cycle of money and goods and services in an economy a macromodel scheme

Functions and scheme of a macro-economic model Typical functions: • production functions

= f (input of capital, labour, energy, time dependent technical progress)

• cost functions

= f (input prices of capital, labour and energy, time and price dependent technical progress)

• consumption functions = f (income, product characteristics and prices) • balancing functions:

total tax income, subsidies, state investments and own operating cost, interest payments (for public authorities) = total wages, total capital income by private households, total expenditures, interest payments, taxes (for private households)

• Exports and imports get specific attention in balancing flows of goods and pay-

ments

Questions difficult to be answered by macro-economic models • Future structural changes in industry due to technological changes (e.g. less en-

ergy-intensive production due to more material efficiency)

92

• Identification of the impact of energy price changes on new energy technology

options (back stop technologies) and related changes in energy demand (future changes in price and demand elasticities) • Quantification of the impact of technical standards (efficiency, substitution) on en-

ergy demand and energy supply • Similar problems regarding informational instruments (e. g. professional training,

learning local networks, initial consulting) and other instruments of entrepreneurial innovations (e.g car pooling, renting of construction machinery) when empirical data are available

Bottom up energy models and their characteristics Models describe the energy using and converting system of an economy by either a simulation or an optimisation model: • flow of different energy carriers in the final energy and conversion sectors • technical parameters like conversion efficiencies, shares of different • processes, cohorts of energy using appliances by classes of years • emissions of air pollutants, climate gases, wastes • economic or technical restrictions e.g. re-investment cycles, minimum domestic

energy supply, • cost of the various technologies (often in additional cost values which means to

rely on a reference scenario), cost reduction by experience • optimisation models produce shadow prices, the cost of technical options • no feed back to macro economic aspects e.g. reduced/increased demand of

goods due to increased (or reduced) energy cost/prices

93

Typical equation for energy demand E E = Σ (drivers • specific energy) Quantities (e.g. heated, ventilated, lighted floor area)

• Partial sectoral models • no feed back loops to macro-economic aspects

Figure III.1-18

Typical structure of a process-oriented energy model for the industrial or service sector

Typical equation for energy demand E E = Σ f(drivers • specific energy use; cost) if demand of drivers is satisfied and cost minimised

• Partial sectoral models • no feed back loops to macro-economic models

Figure III.1-19

Example of an optimisation model of the basic chemical industry minimising the production cost of a given set of quantities of basic chemicals

Questions difficult to be answered by bottom up models • Future demand of energy-intensive product due to inconsistent assumptions that

the demand will not change although more steel, non-ferrous metals, insulation materials, glass are needed for the policy scenario

94

• The impact of changes in energy prices or cost of energy services on final de-

mand is unclear • The impact in suggested financial programmes and subsidies on the public

households, on prices and employment is unclear • Quantification of the impact on export and imports of products and services is un-

clear • In many cases: iterative calculations of macro and bottom up model would be

needed

The solution: linking macro-economic and bottom up energy models • Each type of models has its own advantages and draw backs; one will not fix it in

their own type of model design • Advantages and draw backs are complementary; why not trying to combine the

models by soft or hard links? −

get the technological details from the bottom up models as well as their ability to model sectoral non-financial policies and the additional cost of efficiency and energy substitution



get the comprehensive picture of the economy, the impact on changing final demand and investments, on prices and employment, on economic growth and changing exports/imports and taxes

Not an easy task, but manageable by teams experienced in both fields of energy modeling, the present research frontier at ETH/CEPE

95

The future situation:

Boundary Conditions – Data from the Database Boundary Conditions

-Macro modellers deliver to transformation module

M. Wickart (MW)

Transformation module

Modified Input, etc.

E. Jochem (EJ)

Energy sectors Household & Electrical appliances G.

- bottum up modellers deliver to macro models

Services G. Catenazzi

Cost module M. Wickart

Catenazzi (GC)

Industry

Transportation

E. Jochem

F. Noembrini (FN) Primary Energy

- consistent results to be expected

Conversion Sectors etc.

Conversion

Conversion F. Noembrini F. Noembrini

Figure III.1-20

Macro-model

Co-generation

Co-generation F. Noembrini F. Noembrini

Emissions

The solution: linking macro-economic and bottom up energy models

Central tasks for linking the top down and bottom up models • Translation of energy demand related information of the macro economic models

into energy drivers - Transformation Module: −

gross production of the construction materials industry to cement, lime, bricks, ceramics, glass



developing independently a view on future material efficiency reducing the demand of construction material



calculating floor area of homes and office buildings from macro data

• Translation of the individual investments in energy sectors (and related policies)

into data relevant for the macro model, e.g.: −

total additional investment by mechanical and electric engineering sectors



total changes in turnover of the electricity, gas, or mineral oil industry



change in the energy consumption structure of industries, services etc.

Hints for literature •

Special Issue of the Energy Journal, April 2006 ("Endogenous Technological Change and the Economics of Atmospheric Stabilisation")

For the interested reader:

96

• Popp, D. (2006). ENTICE-BR: The effects of backstop technology R&D on climate

policy models. Energy Economics 28 (2006) 188-222

97

IV.

Hemmnisse und Marktunvollkommenheiten sowie Energie- und Klimapolitik

IV.1. Hemmnisse der Energieeffizienz und -substitution Lecture June 15, 2006

Obstacles of Energy Efficiency and Substitution • company internal obstacles and problems • preferences, traditions, prestige, and psychological issues • unfavourable legal and other boundary conditions

g

g

g p

Energiestatistik

Energieressourcen - Reserven - Ressourcen Rationelle Energieanwendung - Effizienzpotentiale - Energiedienstleistungen

- beschreibende - analytische - Datenquellen Energietechnik Wärmetechnik Elektrotechnik Bautechnik Energienachfrage

Energieperspektiven - Szenariotechnik - Modellierung Figure IV.1-1

- mikroökonomische Analysen I und II

Übersicht zur Vorlesung

Energiepolitik - Maßnahmen und Bündel - EU und international today Obstacles and Market imperfections

- company internal obstacles - general deficits - sectoral obstacles Unternehmen und Märkte - Produktionskosten und Preise - Externe Kosten - Deregulierung der Märkte

98

Internatinal competition

foreign producers

foreign consumers

Market for goods and services

Natural environment

Natural environment

Legal boundary conditions

Company internal obstacles

e.g. social security e.g. subsidies benefits Public authority Private at federal, Companies Households regional and local level e.g. taxes e.g. taxes

Not monetised external effects

Preferences, traditions, prestige

e. sa la r ie s, g wa es

Figure IV.1-2

Market for production inputs, e.g. labour, capital

e. g. lab ou r

g.

Natural resources

Money Goods

Obstacles and market imperfections reality versus theory

Traditional concept of obstacles of energy markets • lack of knowledge and sufficient market survey • high transaction cost (for searching solutions, tendering, decision preparation and

decision making) • lack of own capital, fear of lending more capital for investments • using only risk measures (pay back period)

Definition of transaction cost Conceptual definition (Coase 1937): • resources that have to be used in order to perform a market transaction • cost for searching the technical solution, the investment cost involved, the tender-

ing process, the negotiations within the company and with external third parties (planners, suppliers, banks, insurances), surveillance of the investment Investment cost = project cost + transaction cost (which are often forgotten) • simplification: all non-project cost are transaction cost (e.g. adaptation cost in the

production process and administration: project cost) • critique: don't mix project cost not considered with transaction cost

99

Figure IV.1-3

Entrepreneurial decisions demand for a communication process using resources (particularly labour cost)

Figure IV.1-4

Transaction cost within the life cycle cost of electrical motors

planning and purchasing cost of electrical motors : more than 10% of total life cycle cost of small investments, but may be negligible for large simple investments

100

Int ernal rat e of ret urn in % per year 1)

Payback t ime requirement

Usef ul lif e of plant

(in years)

(in years) 3

4

5

6

7

10

12

15

2

24%

35%

41%

45%

47%

49%

49,5%

50%

3

0%

13%

20%

25%

27%

31%

32%

33%

0%

8%

13%

17%

22%

23%

24%

0%

6%

10%

16%

17%

18,5%

0%

4%

10,5%

12,5%

14,5%

4,5%

7%

9%

4 5 6

unprof it able

8 1)

Cont inuous energy saving is assumed over t he w hole usef ul lif e of t he plant Prof it able invest ment possibilit ies eliminat ed by a f our-year payback t ime requirement

Source: FhG-ISI

Figure IV.1-5

One of the major company-internal obstacles of resource efficiency

Attention: if transaction cost of alternative investments are quite different, they have to be included for both optional projects

Traditional concept of obstacles of energy markets • lack of knowledge and sufficient market survey, • high transaction cost (for searching solutions, tendering, decision preparation and

decision making) • lack of own capital, fear of lending more capital for investments • using only risk measures (pay back period) • lack of time in every day troubles, particularly in small companies • risk adverse behaviour (risks of product quality or of production) • Investor-/user-dilemma (multi family and office buildings, Leasing) • legal obstacles, e.g. conservation of historic facades, payment rules of planners

and archtects • market power (e.g. local monopolies of suppliers, feed-in tariff, dumping prices)

New understanding of the obstacles and market imperfections • No mechanistic single barrier system to be overcome, but identification of the ob-

stacles along the value chain and also the opportunities of players (understanding the problem as a syndrome) • Opportunities:



early movers well informed, risk taking (as producers or users)

101



taking the wrong decision criteria as an opportunity for business (e.g. conversion plant and efficiency contracting)



accelerating R&D and innovation subsidies to reduce initial high cost (e.g. fuel cell technology in many OECD countries, wind energy in EU)

• Integration of existing bundles of obstacles and of opportunities to be seen for

successful energy and climate change policy VOLUNTARY T R A I N IN G A G R E E M E N T S O F SA LE S PE R SO N N EL VOLUNTARY AGREEM ENTS

STAN D ARD S

PROCUREM ENT PROGRAM M ES

ST AN D A R D S L A B E L L IN G

C A M P A I G N S R E P L A C IN G I N E F F I C IE N T A P P L I A N C E S

CO NSULTANCY/ A D V IS E R S S U B S ID I E S A N D D U T IE S

BUYING & MARKETING by OEMs

L A B E L L IN G

B U Y IN G

M A R K E T IN G b y m o to r m a n u fa c tu r e r s

IN F O R M A T IO N

PRODUCTDEVELOPM ENT

USE NEW PRODUCT CYCLE I N F O R M A T IO N

S U B S I D IE S F O R R & D

Figure IV.1-6

C O N SU LTA N C Y / A D V ISE R S E N V IR O N M E N T A L TAXES

Possible policy instruments reducing exsting obstacles or heading for incentive structures in the product life cycle

Opportunity analysis as a precondition of successful policy design Concept of first movers: −

who is well informed? what risks are accepted, and why are they accepted?



are they competent in the energy technology field considered?



do they have needed competence and capital for the new technology?



what could be their first mover benefits? Are these obvious or can they be made more evident? By what means?

taking the wrong decision criteria as an opportunity for business −

contracting: planning, financing, operating (or lease back)



what do the contractors specifically need for their business? (obstacles of contracting: - risks: besides the usual risks to dependence on one customer - operating to be removed from the old plant

accelerating R&D and innovation subsidies to reduce initial high cost −

improving efficiencies, reliability, or profitability

102



reducing initial high cost of new technologies by initial declining subsidies

Typical equation for energy demand E E = Σ (drivers • specific energy use)

Obstacles implicitly imbedded in the values of the specific energy demand data or the shares of technology

• Partial sectoral models • no feed back loops to macro-economic aspects

Figure IV.1-7

Typical structure of a process-oriented energy model for the industrial or service sector

Typical equation for energy demand E E = Σ f(drivers • specific energy use; cost) if demand of drivers is satisfied and cost minimised

Obstacles can only simulated by boundary setting in optimisation models

• Partial sectoral models • no feed back loops to macro-economic models

Figure IV.1-8

Example of an optimisation model of the basic chemical industry minimising the production cost of a given set of quantities of basic chemicals

Hints for literature • World energy assessment, 2000 (J. Goldemberg editor)

103

• IPCC third assessment report, Working Group III, Mitigation, Cambridge University

Press, 2001 • Gruber, E. [to be distributed]

Market power (a recent case )

Bundesverband WindEnergie e.V. Pressemitteilung vom 15. Juni 2006

Bundesregierung macht Dampf beim Netzausbau Gesetzesänderung für mehr Windstrom / Windmüller wollen eigenes Stromnetz Berlin – Immer öfter schalteten Netzbetreiber wie Eon in den vergangenen Jahren Windkraftanlagen unter dem Vorwand ab, dass das Stromnetz angeblich überlastet wäre. Damit soll nun in Kürze Schluss sein: Noch in diesem Jahr will die Bundesregierung per Gesetz eine ungehinderte Stromproduktion aus Windenergie regeln. Bundesumweltminister Sigmar Gabriel will in Kürze hierzu einen neuen Gesetzentwurf erarbeiten. Dies hat das Kabinett gestern beschlossen. Peter Ahmels, Präsident des Bundesverbands Windenergie: „Es wird höchste Zeit, dass Eon, Vattenfall und Co. ihre Stromnetze ausbauen. Den Windmüller in Schleswig-Holstein etwa entstand durch angebliche Netzengpässe ein Schaden in Millionenhöhe und Umwelt und Verbraucher entgingen zig Millionen CO2-frei hergestellter Kilowattstunden Strom.“

„Windindustrie, Gesetzgeber und Regierung werden nun diskutieren müssen, wie man den Netzausbau am schnellsten vorantreibt, und welche Möglichkeit für Erzeuger, Umwelt, Bevölkerung und Verbraucher die beste ist. Ein schneller Netzausbau ist das Wichtigste. Die Windenergieanlagenbetreiber können ein leistungsfähiges Stromnetz auch selbst bauen. Der Betrieb würde den Verbraucher wesentlich günstiger kommen als das überhöhte Netzentgelt der Energieversorger“, so BWE-Präsident Ahmels: „Die Initiative des Bundesumweltministers muss den Netzbetreibern ordentlich Dampf machen. Denn triftige Gründe für das Erzeugungsmanagement Eons gibt es nicht.“ Mehrere Studien unabhängiger Institute hatten belegt, dass das Stromnetz auch an stürmischen Tagen nicht voll ausgelastet ist: Denn starker Wind bringt nicht nur mehr Strom ins Netz, sondern kühlt dann auch die wärmer werdenden Stromleitungen. Auch die angeblichen Probleme und aufwändigen Genehmigungsverfahren für neue Stromleitungen sind von Eon hausgemacht: Statt auf kostengünstige und schnell zu verlegende Erdkabel setzt Eon mit Absicht auf Freileitungen beim Netzausbau, die allein schon wegen massiver Bürgerproteste langwierige Gerichtsverfahren nach sich ziehen. Ahmels: „So kann Eon die Zeit bis zur Fertigstellung einer neuen Stromleitung auf bis zu 15 Jahre strecken. Ein Erdkabel ist hingegen in zwei Jahren betriebsbereit.“ Mehrere Windparkbetreiber in Schleswig-Holstein haben bereits Schadenersatzklagen gegen Eon beim Landgericht Itzehoe eingereicht, um Eon einen Strich durch die Rechnung zu machen. Der Netzbetreiber ist laut Erneuerbare-Energien-Gesetz (EEG) schon heute zum „unverzüglichen Ausbau“ verpflichtet, falls es im Stromnetz zu eng wird. Doch den überfälligen Netzausbau hatte Eon in Schleswig-Holstein immer weiter verzögert. Auch in anderen Bundesländern verhalten sich die jeweiligen Netzbetreiber ähnlich. Ahmels: „Die Strategie der Netzbetreiber ist durchsichtig: Wenn die Netzkapazität klein bleibt, bleibt auch die Konkurrenz der Windkraftanlagen-Betreiber klein.“ Die Netzblockade – von Eon beschönigend „Erzeugungsmanagement“ genannt – drosselt nicht nur die WindstromErzeugung, sondern droht auch Investitionen in neue Windkraftanlagen in Milliardenhöhe zu

104

verhindern. Ahmels: „Das Investitionspotenzial der Windenergie in Norddeutschland inklusive Nord- und Ostsee liegt in den nächsten 15 Jahren bei über 50 Mrd. € . 2020 kann die Windkraft über 20 Prozent der deutschen Stromversorgung sichern. Klar, dass E.on die drohenden Umsatzverluste mit seinem begrenzten Stromnetz blockieren möchte.“ Links: Hintergrundpapier Netzausbau: http://www.windenergie.de/fileadmin/dokumente/Presse_Hintergrund/HG_Erdkabel.pdf Fotogalerie: http://www.wind-energie.de/de/bildergalerie/

Lecture June 22, 2006

Market imperfections • market power • the role of media, marketing, voters, consumers, • external cost of energy use, not reflected in energy prices • international competition arguments

Energy policy instruments I • general instruments (taxes, surcharges, tax deductions, reduced VAT) • international co-ordination, negotiations, amnd policy targets

Market power by capital, know how, local monopoly (two cases in June 2006) Electricity transmission lines and additional wind power capacity in D Transmission line companies: obliged by law to add capacity in case of lack of capacity, but • wrong arguments: at high wind power generation, electricity transmission capacity

not fully exhausted because of cooling by winds and storms, but transmission companies argue "full capacity exploited" • wrong investment alternative: transmission line companies apply for cross country

lines knowing the construction permission will take 10 to 15 years; alternative of underground line not considered (three years construction) Gas delivery contracts between gas importing company and distributors • Duration of contracts of e.on-Ruhrgas with municipalities: 15 to 20 years in D • Court decided in June 2006: contracts with more than four years duration are ille-

gal

The role of media, marketing, voters, consumers

105

Economic theory: full information of market participants The reality is: • media give information that pleases their audiences (if there is no interest or no

possibility of understanding, the media will not take the issue up) • marketing tries to "sell" the producers product, the information is often misleading,

using present life style patterns, social reputation, etc. (i.e. often no information on technical figures like specific energy demand) • voters mostly want short term benefits, efficiency is misunderstood as limitation of

the wanted life styles and of comfort achieved • consumers are mostly partially informed, depending very much on their education,

information patterns, interests; energy issues are not well understood being too complex, too technical, not interesting;

Facit: the status of knowledge is not reflecting "full information" What are External Effects? – Definition External Effects • unintentional side-effects of production or consumption affecting a third party (or

nature) either positively (external benefit) or negatively (external cost) • not included in the cost or price of the produced or consumed product or service

Examples: local pollution from energy use: increase of respiratory illness, high energy-efficient buildings: increase of local employment, less energy imports, better balance of trade

106

Damage function methodology: cost = f(emissions, dispersion, receptors) Characterisation of the relevant technologies and the environmental burdens they impose.

Emission (e.g. kg/yr of particulates)

N

Dispersion

W

(e.g. atmospheric dispersion model)

Impact (e.g. cases of illness due to particulates)

impact

S dose response function

concentration

Cost (e.g. of illness due to particulates)

Figure IV.1-9

Evaluation of incremental pollutant concentrations (e.g. mg/m3 of E particulates) in all affected regions. Characterisation of the population or receptor exposed to incremental pollution; identification of suitable exposureresponse functions; estimation of physical impact. Economic valuation (monetarisation) of the impacts. All cost are summed over all receptors (population, crops, buildings, etc.) that may be affected by this burdens. [… cost of life, man-day lost, …] Source: ExternE

Impact Pathways - Identification, quantification and monetarisation of external effects

Example of External Cost: Violent Storms (eventually induced by 40 % increase of GHG concentration)

Table IV.1-1

Violent storms/hurricanes worldwide between 1950 and 1999 1950-59

1960-69

N u m b e r o f la rg e 7 10 sto rm s/h u rrica n e s T o ta l 10.3 30.5 m a cro e co n o m ic d a m a g e , b illio n M a cro e co n . d a m a g e 1.5 3.1 p e r e ve n t, b illio n U S $*) T o ta l in su re d 0 6.5 da m a ge , b illio n U S $*) *) In pr ic e s of 1 9 9 9 ;1 9 9 9 figur e s inc om ple te S our c e : M unic h Re , 2 0 0 0

1970-79

1980-89

1990-99

19

21

39

45.9

48.2

166.0

2.4

2.3

4.3

10.4

18.8

71.4

107

Table IV.1-2

The External Cost of Electricity Generation

Type of power plant

includes climate change (1)

Hard coal based Lignite based Oil fueled gas turbine Gas fueled gas turbine Combined gas/steam turbine/gas Nuclear power Photovoltaic Wind power Hydro power

averages of estimated external cost in €/kWh no yes IER, University of Stuttgart

no ExternE

14 16 34 11 5 0.5 1.5 0.4

6-16 10 12 0.7 2.5 1-2 2

36 45 59 28 15 1 3 1.5

no IER, 1996 4-13 7 14 6 1.5-4.5 2.5 0.25-1

(1) Reference case: +2.5K globally, CO2 dammage cost of 1.5-4.5 €/t CO2 (r = 0.5-3%)

Problems of Quantifying External Effects Related to Energy Use Quantification often not easy/very difficult and costly/impossible(?), due to: • limited knowledge: unknown chains of quantitative impact, particularly of bio-

logical or economic causal relationships • allocation problems: several environmental stresses (e.g. smoking, air quality in

production facilities or indoor chemicals from furniture) cannot be separated • method of measurement is not available or generally accepted (e.g. changes of

a scenic view, destruction of a national park) • uncertainties: long time horizon, ... ExternE: „... one of the most important con-

clusions is that uncertainties are large.“ Direct monetarisation via WTP/WTA approaches are sometimes easier to realise than quantification of the effect via dose-response or other bottom-up quantification methods.

International competition – globalization Leading the internalisation of external cost as an industrialised country? No, too dangerous, loosing competitiveness: • what branch? Only branches with energy cost shares of more than 10% • other factors influencing competitiveness may be more decisive: product

reliable maintenance and quick repairs, close to customer, • example: Japan: highest energy prices since decades

Yes, keeping the technological leadership • high export rates can only be sustained by new technologies,

quality,

108

• the high salaries must reflect additional value added relative to low wages coun-

tries • less external cost is a relative advantage for the industrialised country's economy

(e.g. using taxes not for repairs, but for education)

Figure IV.1-10

The three objectives and new challenges of energy policy in the next two decades

Energy policy instruments I General instruments (covering the economy, the country, all relevant technologies) • taxes on energy use (internalisation of externalities, public revenue) • surcharges on energy or CO2 emissions (re-spending of revenues is fixed for a

certain purpose, e.g. the Swiss CO2 law: revenues repaid to energy users according to total labour cost each company) • tax deduction on income tax for defined energy efficiency investments (e.g.

French private households) • reduced value added tax for defined energy efficiency or substitution invest-

ments (e.g. United Kingdom) • emission certificates on greenhouse gases (e.g. EU emission certificates) • general information for developing awareness to energy issues

Example: Swiss CO2 law Major features of the law (2000): • CO2 emissions (1990) of Switzerland have to be reduced by 10% until 2010

109

• CO2 surcharge ( up to 210 CHF/t CO2) has to be implemented in 2005 if it is

likely that the target will nor be reached • companies can be exempted from the surcharge if they have a certified individual

target for heir company The implementation of the law since 2005: • in total, CO2 emissions were not reduced (mainly due to increases in transporta-

tion • oil industry negotiated the climate penny instead of the surcharge (9 cts/l) for

transportation • 35 % of industrial energy use exempted from surcharge due to individual targets

accepted by the government • the amount of the surcharge still not decided in June 2006 (35 CHF/t CO2 in con-

sideration), oil industry tries to apply the climate penny also to buildings

Kyoto Protocol of the Framework Convention on Climate Change (FCCC)

Literature

Lecture June 29, 2006 Energy policy instruments I and II • general instruments (taxes, surcharges, tax deductions, reduced VAT) • international co-ordination, negotiations, and policy targets (Kyoto, EU) • sector and technology specific instruments • bundles of measures and instruments, international trade

Evaluation of energy and climate change policies • direct and indirect effects • innovation policies, long term aspects

110

Multinatinal agreements

foreign producers

foreign consumers

Market for goods and services

Natural environment

subsidies

e.g. taxes

Natural environment

benefits

Public authority at federal, regional and local level

Private Households taxes

Information, labels, building codes

e.

Company internal policies, e.g. training Taxes, Companies surcharges, emission certificates, emission standards

Adopted and new legal boundary conditions e.g. social security

s, s ge wa

g.

r ie

Money

e.

la

Figure IV.1-11

Market for production inputs, e.g. labour, capital

l ab

sa

ou r

g.

Natural resources

Goods

Policies alleviating obstacles and market imperfections

Climate change policies (globally)

Least cost energy services (national) Secure oil and gas supply, no black outs, renewable energies (national, multi-national)

Figure IV.1-12

The three objectives and new challenges of energy and climate change policy in the next two decades

111

Beiträge zur CO2-Reduktion und Energiekostensenkung (am Beispiel Schweiz 2000-2010)

Reduktion 1990-2010 (gegenüber fixer Energieeffizienz, aber Strukturwandel berücksichtigt)

Energieeffizienz (rationelle Energieverwendung): 74% -70 PJ; d.h. 1,3 Mrd. CHF/a - induzierte Investitionen: 6 Mrd. CHF

Erdgas: 14% Erneuerbare und Abfall: 12% Figure IV.1-13

Energieeffizienz spielt Schlüsselrolle auf den Märkten der kommenden 10 Jahre

New understanding of energy and climate policy making • General policy measures (cross sectoral policies) • Bundles of policy measures along the value chain as reaction on several obsta-

cles and market imperfections (understanding the solution overcoming a syndrome) • Mobilising the inherent opportunities:



first movers (well informed, risk taking (as producers or users)



initiating new types of companies (contracting, car sharing)



accelerating R&D (e.g. fuel cells, passive houses, photovoltaics)



innovation subsidies to reduce initial high cost (e.g. wind energy in EU, China, India, USA; heat pumps in CH)

Example: Swiss CO2 law Major features of the law (2000): • CO2 emissions (1990) of Switzerland have to be reduced by 10% until 2010 • CO2 surcharge ( up to 210 CHF/t CO2) has to be implemented in 2005 if it is

likely that the target will nor be reached • companies can be exempted from the surcharge if they have a certified individual

target for heir company The implementation of the law since 2005:

112

• in total, CO2 emissions were not reduced (mainly due to increases in transporta-

tion) • oil industry negotiated the climate penny instead of the surcharge (9 cts/l) for

transportation • 35 % of industrial energy use exempted from surcharge due to individual targets

accepted by the government • the amount of the surcharge was decided on June 21, 2006 (Nationalrat:12 CHF/t

CO2) cts/kWh

12 cost of coal-fired power plants 10

SO 2- und NO X reduction

wind electricity cost f = 89,5%

other costs

cost of desulfurisation and DeNO X

costs of capital labour costs

8 K

subsidy 6

4

costs of coal

cost of coal-fired power plants (constant)

2

0 2002

2010

Figure IV.1-14

t 1''

t 1'

t1 2020

2030

2040

Break even of wind and coal-based electricity cost

Climate change: • storms • heat waves • increasing temperatures • floods • melting glaciers • rising sea levels

Very high adaptation costs are posed on future generations.

t2 2050 time

113

Figure IV.1-15

Hurrican's impact on water basins – New Orleans August/Sept. 2005

The coincidence of two challenges: - climate change as heavy storms - reduced crude oil production The impacts: - increasing insurance tariffs - increasing adaptation cost - increasing energy prices Solutions wanted

Figure IV.1-16

Oil producing platform at the beach destroyed by a hurricane

Kyoto Protocol of the Framework Convention on Climate Change (FCCC) Negotiated among the most countries of the world in 1997 in Kyoto

114

• target: a quantified reduction of greenhouse gas emissions by the industrialised

countries: - 5,2 % of 1990 emissions by 2008 – 2012 (EU: 8%) • instruments: control: National reporting of the industrial countries



emission certificates to trade among industrial countries



Joint implementation (between western and transition countries)



Clean development mechanism (between northern and southern countries, the last two generating project based allowances)

• regular international conferences on rules and further targets (2020) : conferences

of the parties (COP) Had to be signed by the governments and ratified by the parliaments • not ratified by the USA, Australia, Canada (strong lobbying of coal and oil indus-

tries), went into force in 2005, after Russia ratified

Intergovernmental Panel on Climate Change (IPCC) within the Framework Convention on Climate Change (FCCC) Reporting on the status of scientific knowledge about climate change (its causes, likely impacts on nature, human settlements and societies, economics and future generations) Organised in a complex process: reports to governments each five years • structured in the natural global climate system, adaptation to climate change, and

mitigation (3 working groups) • about 3.000 scientists involved (writing, reviewing, editing) • full report (1000 pages), technical summary (100 pages), summary for policy

makers (40 pages) for each of the three working groups • all actions have to be approved by the general assembly (more than 100 countries

with very divergent interests, e.g. USA, Saudi Arabia, Australia, China)

115

Figure IV.1-17

Scheme of the Swiss energy research and innovation system and actors

Overview of sector- and technology-specific instruments Building codes for new houses and buildings retrofitting • in CH: given by the cantons, in France: nationally but for four different climates, • problem: refurbishment of houses and buildings often not considered, difficulties

Technical standards and labels. • electrical appliances, electrical motors, cars (by emission rules) • problems: less competition, lobbying power, etc. one solution: top runner

Information and professional training • initial consulting, media activities, brochures, seminars • problem: voluntary actions, 5 to 10 % coverage of those who need info

Subsidies and comparable financial incentives • subsidy on investment cost, lower interest rate, reduction on income tax • problems: free rider effect, cumbersome application and control,

Research and development of specific technologies • problem: on what to spend the R&D budget? (high risk? Long term?)

116

The example: EnergySwitzerland – a programme of the BFE, Bern Technical standards and labels. • electrical appliances, electrical motors (took over the EU labelling scheme), cars

(no emission rules, although no car producer) Information and professional training • initial consulting for public authorities and SMEs, • media activities, brochures, (new series on "there s no difference" in 2006) • EnergyModel Switzerland (local learning network reducing transaction cost) • Efficient compressed air (technology-specific activity in industry)

Subsidies and comparable financial incentives • subsidy on investment of efficiency or substitution, ewz: specific tariff

Research and development of specific technologies • CORE (national research council on energy R&D) • efficiency, renewables, nuclear power, efficient electricity generation • socio-economic research; Perspektiven; evaluation of policy measures

Direct and indirect impacts of energy policies Direct impacts • less energy demand through efficiency • less heavily emitting energy use by fuel substitution and emission control • less greenhouse gas emissions

Indirect impacts of energy policy • at the business level: less energy cost, some co-benefits • at the energy economy level: stable energy prices, secure supply • at the macro economic level: additional net employment and growth, better health,

less adaptation cost in the long term, lower insurance bills Efficiency and renewables as an innovation programme

117

Table IV.1-3

emissions of conventional air pollutants (national)

Statistical Analysis of the Production of products of efficiency and REN

policy implementation

reaction time between maximum of emission and maximum of damage for air pollutants (e.g. 2SO , NO

X

)

external costs due to air pollutants

external costs due to air pollutants (corrosion, forest damages, respiratory deseases)

acceptance because of noticeable damage

time

1950 2000 2050 Voters wanted asking for policy action despite no damage is visible (but anticipated) policy formulation and implementation

emissions CO2 (global)

acceptance because of predictable damage ? Rio 1992

1950

2000

external costs due to CO2

reaction time between maximum of emission and maximum of damage for CO 2 climate damage due to emissions of CO 2

time

2050

k:\e\user\stud-ej1\ulrich\il\folien\emisseng.drw

Figure IV.1-18

Is there a discrepancy between long term CC and democratic structures?

118

Rules of exams of the course Benoteter Nachweis for having succesfully taken the course: • 1.5 hours written exam at July 6, at 15.15 h • alternative on July 20, afternoon: oral examination (0.5 h) • Testtaterfordernis: at least two positive scoring of the Übungen (last input date:

July 6, 2006 before written exam) • 3rd credit point: 10 page written paper to be accepted

Ansprechpartner: Andrea Honegger-Ott Martin Jakob

[email protected] until July 6 [email protected] after July 6

119

Glossary This glossary should support the understanding of the English literature as well as to develop a joint understanding of the expert language of energy economics and policy. it is still under development and hints for improvement by the students are very welcome.

Ancillary benefits The ancillary, or side effects, of investments and policies aimed exclusively at climate change mitigation. Such policies have an impact not only on greenhouse gas emissions, but also on emissions of local and regional air pollutants associated with fossil fuels, and on issues such as transportation, agriculture, employment, and fuel security. Barrier A barrier is any obstacle to reaching an economic potential of resource efficiency that can be overcome by a policy, programme, or measure not only by government, but also by trade associates or other third parties (another term for barrier, often used, is obstacle). Co-benefits The benefits of investment and policies that are implemented for various reasons at the same time – including energy or material efficiency – acknowledging that most policies designed to address resource efficiency also have other, often at least equally important, rationales (e.g. related to objectives of improved product quality or capital and labour productivity). Co-generation The use of waste heat from electric generation, such as exhaust from gas turbines, for either industrial purposes or district heating. Contracting Contracting is the outsourcing of an energy converting plant (e.g. heat generation, co-generation, production of compressed air, cold, or technical gases) that is planned, built, financed, operated and maintained by an other company (energy service company). It can also cover energy saving services such as efficient illumination, heat recovery and insulation of buildings (the latter facing legal obstacles). Economic Potential Economic potential is the portion of technological potential for energy or material efficiency improvements that could be achieved cost-effectively through the creation of markets, reduction of market failures, increased financial and technological transfers. The achievement of economic potential requires additional policies and measures to break down market barriers. Energy efficiency Ratio of energy output of a conversion process or of a system to its energy input or of an energy service to its useful energy input. Energy intensity Energy intensity is the ratio of energy use to economic or physical output. At the national level, energy intensity is the ration of total domestic primary energy consumption on final energy consumption to Gross Domestic Product, value added, or physical output such as heated floor area or person-km.

120

Energy service The application of useful energy to tasks desired by the consumer such as transportation or persons and freight, a warm room, or illuminated production facility, or tonnes of electro steel produced. Final energy Energy supplied that is available to the consumer to be converted into useful energy (e.g. electricity at the wall outlet, heating oil, gasoline, diesel, natural gas, coke, wood ships). Frozen efficiency The material or energy efficiency of today is projected to be the same in future years. Gross Domestic Product (GDP) The sum of all values added produced by all economic sectors of a national economy within a given period of time (e.g. during one year). Material efficiency Ratio of a desired service to the physical quantity of material necessary to deliver the service (e.g. 0.6 to 2.0 tonnes per car, 30 g per 1 ltr. glass bottle, 60 g per m2 newspaper). Mitigation An anthropogenic intervention to reduce the source or enhance the sinks of greenhouse gases (e.g. by energy and material efficiency, renewable energies instead of fossil fuels). Pooling Machines or vehicles are used by several customers instead of owning them. The renting or leasing is organised by a service organisation that generally owns and maintains the pool. Primary energy Energy embodied in natural resources (e.g. coal, crude oil, natural gas, sunlight, wood, wind, bio-mass, uranium) that has not undergone any anthropogenic conversion or transformation. Recycling The material of an used product or vehicle is returned to the production step of secondary material after being shredded, selected and eventually purified (steel scrap for input into electric arc furnaces to produce new steel). Re-use An used product or vehicle is partially or totally returned to the market after some repairs, amelioration or partial substitution of components (e.g. tires, gear boxes, combustion engines, glass bottles, frame of copy machines). Structural change Changes over time in the relative shares of energy-intensive and-extensive economic sectors in the industrial, agricultural, or services sector, changes of the share of floor area of one- and two-family houses to the total floor area of residential buildings or of heavy, large cars of the car stock. Technical potential The amount by which it is possible to improve energy and material efficiency by implementing a technology or practice that has already been demonstrated.

121

Useful energy The energy use related to all energy losses that are lost by end-uses (heated rooms, moving vehicles) to dissipated heat at ambient temperature. Status Juni 2006